Skip to main content
Log in

Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, et al. 2002 MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415 977–983

    Article  CAS  PubMed  Google Scholar 

  • Bari R and Jones JD 2009 Role of plant hormones in plant defence responses. Plant Mol. Biol. 69 473–488

    Article  CAS  PubMed  Google Scholar 

  • Barth C and Jander G 2006 Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 46 549–562

    Article  CAS  PubMed  Google Scholar 

  • Bent AF and Mackey D 2007 Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45 399–436

    Article  CAS  PubMed  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF and Dong X 1997 The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9 1573–1584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YT, Germain H, Wiermer M, Bi D, Xu F, Garcia AV, Wirthmueller L, Despres C, et al. 2009 Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21 2503–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH and Hwang I 2010 The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 19 284–295

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P and Sacchi N 1987 Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162 156–159

    Article  CAS  PubMed  Google Scholar 

  • Desclos-Theveniau M, Arnaud D, Huang TY, Lin GJC, Chen WY, Lin YC and Zimmerli L 2012 The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog. 8 e1002513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong X, Mindrinos M, Davis KR and Ausubel FM 1991 Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3 61–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis C and Turner JG 2001 The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13 1025–1033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giri MK, Swain S, Gautam JK, Singh S, Singh N, Bhattacharjee L and Nandi AK 2014 The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. J. Plant Physiol. 171 860–867

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Felix G and Boller T 1999 A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18 277–284

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter SS, Dudnik A, Widmer H and Dudler R 2013 Arabidopsis YELLOW STRIPE-LIKE7 (YSL7) and YSL8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells. Mol. Plant Microbe Interact. 26 1302–1311

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Chung MS, Ju HW, Na HS, Lee DJ, Cheong HS and Kim CS 2010 Physiological characterization of the Arabidopsis thaliana oxidation-related zinc finger 1, a plasma membrane protein involved in oxidative stress. J. Plant Res. 124 699–705

    Article  PubMed  Google Scholar 

  • Ishikawa K, Yoshimura K, Harada K, Fukusaki E, Ogawa T, Tamoi M and Shigeoka S 2010 AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling. Plant Physiol. 152 2000–2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jirage D, Zhou N, Cooper B, Clarke JD, Dong X and Glazebrook J 2001 Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J. 26 395–407

    Article  CAS  PubMed  Google Scholar 

  • Jones JD and Dangl JL 2006 The plant immune system. Nature 444 323–329

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ and Klessig DF 2001 A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA. 98 9448–9453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knoth C and Eulgem T 2008 The oomycete response gene LURP1 is required for defense against Hyaloperonospora parasitica in Arabidopsis thaliana. Plant J. 55 53–64

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Jung HJ, Kang H and Kim SY 2012 Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol. 53 673–686

    Article  CAS  PubMed  Google Scholar 

  • Lee WY, Lee D, Chung WI and Kwon CS 2009 Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J. 58 511–524

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zou Y and Feng N 2010 Overexpression of AHL20 negatively regulates defenses in Arabidopsis. J. Integr. Plant Biol. 52 801–808

    Article  CAS  PubMed  Google Scholar 

  • Mir R, Hernandez ML, Abou-Mansour E, Martinez-Rivas JM, Mauch F, Metraux JP and Leon J 2013 Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. J. Exp. Bot. 64 3385–3395

    Article  CAS  PubMed  Google Scholar 

  • Monaghan J and Zipfel C 2012 Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15 349–357

    Article  CAS  PubMed  Google Scholar 

  • Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, et al. 2009 Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 5 e1000526

    Article  PubMed Central  PubMed  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T and Jones JD 2004 The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135 1113–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A and Van Wees SC 2012 Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28 489–521

    Article  CAS  PubMed  Google Scholar 

  • Po-Wen C, Singh P and Zimmerli L 2013 Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 14 58–70

    Article  PubMed  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, et al. 2006 Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18 3721–3744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santner A, Calderon-Villalobos LI and Estelle M 2009 Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5 301–307

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Lee AK, Xiang F and Park CM 2008 Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol. 49 334–344

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Kachroo P and Klessig DF 1999 The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11 191–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh V, Roy S, Singh D and Nandi AK 2014 Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J. Biosci. 39 119–126

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Roy S, Giri MK, Chaturvedi R, Chowdhury Z, Shah J and Nandi AK 2013 Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. Mol. Plant Microbe Interact. 26 1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Staswick PE, Su W and Howell SH 1992 Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. U. S. A. 89 6837–6840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swain S, Roy S, Shah J, Van Wees S, Pieterse CM and Nandi AK 2011 Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Mol. Plant Pathol. 12 855–865

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Guo Y, Wu C, Yang G, Li Y and Zheng C 2008 Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics 9 44

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Zhang Y, Ding P, Johnson K and Li X 2012 The ankyrin-repeat transmembrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. Plant Physiol. 159 1857–1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N and Jin H 2011 Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42 356–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY and Dong X 2012 Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11 587–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T and Felix G 2006 Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125 749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Arabidopsis Biological Resource Center, Ohio State University, USA, for mutant seed lines, and Genotypic Technology, Bangalore, India, for microarray experiment. This work is supported by the Council of Scientific and Industrial Research, India, Grant (No. 38(1358)/13/EMR-II), and UGC grant (F.No. 40-398/2011(SR)) to AKN, and CSIR fellowships to SS and NS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Nandi.

Additional information

Corresponding editor: Utpal Nath

[Swain S, Singh N and Nandi AK 2015 Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. J. Biosci. 40 1–10] DOI 10.1007/s12038-014-9498-9

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/mar2015/supp/Swain.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.34 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S., Singh, N. & Nandi, A.K. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. J Biosci 40, 137–146 (2015). https://doi.org/10.1007/s12038-014-9498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9498-9

Keywords

Navigation