Skip to main content
Log in

Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ultra-oligotrophic. Based on morphology and 16S rRNA gene sequence, a total of 20 cyanobacterial species belonging to 11 genera were identified. Canonical correspondence analysis distinguished three groups of species with respect to their occurrence and nutrient/physical environment demand. The first group, which included Nostoc linckia, N. punctiforme, Nodularia sphaerocarpa, Geitlerinema acutissimum, Limnothrix redekii, Planktothrix agardhii and Plank. clathrata, was characteristic of water with high nutrient content and high temperature. The second group, including Gloeocapsopsis pleurocapsoides, Leptolyngbya antarctica, L. frigida, Pseudanabaena frigida and N. spongiaeforme, occurred in oligotrophic water with high pH and low temperature. The distribution of third group of Cyanobium parvum, Synechocystis pevalekii, L. benthonica, L. foveolarum, L. lurida, L. valderiana, Phormidium autumnale and P. chalybeum could not be associated with a particular environmental condition because of their presence in all sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Anagnostidis K and Komárek J 1985 Modern approach to the classification system of cyanophytes.1. Introduction. Arch. Hydrobiol. /Algol. Stud. 38/39 291–302

    Google Scholar 

  • APHA (American Public Health Association), American Water Works Association (AWWA) and Water Environment Federation (WEF) 2005 Standard methods for the examination of water and wastewater (Washington: DC)

  • Badger MR, Price GD, Long BM and Woodger FJ 2006 The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J. Exp. Bot. 57 249–265

    Article  CAS  PubMed  Google Scholar 

  • Barinova S and Tavassi M 2009 Study of sessonal influences on algal biodiversity in the river Yarion (central Israel) by bioindication and canonical correspondence analysis (CCA). Turk. J. Bot. 33 353–372

    Google Scholar 

  • Bhat FA, Yousuf AR, Aftab A, Arshid J, Mahdi MD and Balkhi MH 2011 Ecology and biodiversity in Pangong Tso (lake) and its inlet stream in Ladakh, India. Int. J. Biodivers. Conserv. 3 501–511

    Google Scholar 

  • Biondi N, Tredici MR, Taton A, Wilmotte A, Hodgson DA, Losi D and Marinelli F 2008 Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J. Appl. Microbiol. 105 105–115

    Article  CAS  PubMed  Google Scholar 

  • Broady PA and Weinstein RN 1998 Algae, Lichens and Fungi in La Gorce Mountains, Antarctica. Antarct. Sci. 10 376–385

    Article  Google Scholar 

  • Catalan J, Camarero L, Felip M, Pla S, Ventura M, Buchaca T, Bartumeus F, Mendoza GA, et al. 2006 High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25 551–584

    Google Scholar 

  • Christner BC, Kvitko BH II and Reeve JN 2003 Molecular identification of bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7 177–183

    CAS  PubMed  Google Scholar 

  • Cohen Y and Gurevitz M 2006 The Cyanobacteria-ecology, physiology and molecular genetics; in The prokaryotes, Vol. 4 (eds) M Dworkin, S Falkow, E Rosenberg, KH Schleifer and E Stackebrandt (New York: Springer) pp 1074–1098

    Chapter  Google Scholar 

  • Desikachary TV 1959 Cyanophyta (New Delhi, India: Indian Council of Agriculture Research)

    Google Scholar 

  • Ehling-Schnlz M and Scherer S 1999 UV-protection in cyanobacteria. Eur. J. Phycol. 34 329–338

    Article  Google Scholar 

  • Ellis-Evans JC 1996 Microbial diversity and function in Antarctic freshwater ecosystem. Biodivers. Conserv. 5 1395–1431

    Article  Google Scholar 

  • Elster J, Svoboda J, Komárek J and Marvan P 1997 Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass. 79°N, Central Ellesmere Island, Canada. Algol. Studies 85 57–93

    Google Scholar 

  • Fernández-Valiente E, Camacho A, Cochera C, Rico E, Vincent WF and Quesada A 2007 Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol. Ecol. 59 377–385

    Article  PubMed  Google Scholar 

  • Gleason HA 1922 On the relation between species and area. Ecology 3 158–162

    Article  Google Scholar 

  • Hannon HH, Fuchs IR and Whitenberg DC 1979 Spatial and temporal patterns of temperature, alkalinity, dissolved oxygen and conductivity in oligomesotrophic deep storage reservoir in Central Texas. Hydrobiology 60 209–221

    Article  Google Scholar 

  • Hawes I and Schwarz AM 2001 Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J. Phycol. 37 5–15

    Article  CAS  Google Scholar 

  • Howard-Williams C, Pridmore RD, Downes MT and Vincent WF 1989 Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct. Sci. 1 125–131

    Article  Google Scholar 

  • Hynes HBN 1979 The ecology of running waters (Liverpool, England: Liverpool University Press)

    Google Scholar 

  • Indian Space Research Organisation 2011 High altitude Himalayan lakes. National wetland inventory and assessment (Ahmedabad, India: Space application centre, ISRO)

    Google Scholar 

  • Jaccard P 1912 The distribution of the flora in the alpine zone. New Phytol. 11 37–50

    Article  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP and Neilan BA 2005 Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7 519–529

    Article  CAS  PubMed  Google Scholar 

  • Kiplagat K, Njuguna SG, Francis MM and Krienitz L 1999 The physico-chemical conditions of Turkwel gorge reservoir, a new man-made lake in Northern Kenya. Limnologica 29 377–392

    Article  Google Scholar 

  • Komárek J and Anagnostidis K 1998 Cyanoprokaryota 1. Teil: Chroococcales; in Süsswasserflora von Mitteleuropa 19/1 (eds) H Ettl, G Gärtner, H Heynig and D Mollenhauer (Jena-Stuttgart-Lübeck-Ulm: Gustav Fischer)

    Google Scholar 

  • Komárek J and Anagnostidis K 2005 in Süsswasserflora von Mitteleuropa 19/2B (eds) B Büdel, L Krienitz, G Gärtner and M Schagerl (Heidelberg: Elsevier/Spektrum)

    Google Scholar 

  • Komárek J and Hauer T 2013 CyanoDB.cz Online database of cyanobacterial genera. Word-wide electronic publication, Univ. of South Bohemia and Inst. of Botany AS CR.

  • Kumar P, Wanganeo A, Sonaullah F and Wanganeo R 2012 Limnological study on two high altitude Himalayan Ponds, Badrinath, Uttarakhand. Int. J. Ecosyst. 2 103–111

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA and Pienitz 2003 Past UV radiation environments and impact on lakes; in UV effects in aquatic organisms and ecosystems: Comprehensive series in photosciences 2 (eds) EW Helbling and H Zagarose (Cambridge, UK: Royal Society of Chemistry) pp 509–545

    Google Scholar 

  • Liu X, Lu X and Chan Y 2011 The effect of temperature and nutrients ratio on Microcystis blooms in lake Taihu, China: an 11-year investigation. Harmful Algae 10 337–343

    Article  Google Scholar 

  • Loza V, Berrendero E, Perona E and Mateo P 2013 Polyphasic characterization of benthic cyanobacterial diversity from biofilms of the Guadarrama river (Spain): Morpholgical, molecular and ecological approaches. J. Phycol. 49 282–297

    Article  Google Scholar 

  • Mackereth FJH, Heron J and Talling JF 1978 Water Analysis: some revised methods for limnologists (London: The Freshwater Biological Association)

    Google Scholar 

  • Marchetto A, Mosello R, Psenner R, Bendetta G, Boggero A, Tait D and Tartari GA 1995 Factors affecting water chemistry of alpine lakes. Aquat. Sci. 57 81–89

    Article  Google Scholar 

  • Mataloni G, Tell G and Wynn-Williams DD 2000 Structure and diversity of soil algal communities from Cierva point (Antarctic Peninsula). Polar Biol. 23 205–211

    Article  Google Scholar 

  • McKnight DM, Niyogi DK, Alger AS, Bomblies A, Conovitz PA and Tate CM 1999 Dry valley streams in Antarctica: Ecosystems waiting for water. Biosci. 49 985–995

    Article  Google Scholar 

  • Mueller D and Pollard WH 2004 Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol. 27 66–74

    Article  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S and Laurion I 2005 Extremophiles, extremotrophs and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 53 73–87

    Article  CAS  PubMed  Google Scholar 

  • Naganandini MN and Hosmani SP 1998 Ecology of certain inland waters of Mysore district, occurrence of cyanophycean bloom at Hosakere lake. Pollut. Res. 17 123–125

    CAS  Google Scholar 

  • Nautiyal H, Bhandari SP and Sharma RC 2012 Physico-chemical study of Dodital Lake in Uttarkashi District of Garhwal Himalaya. Int. J. Scient. Technol. Res. 1 58–60

    Google Scholar 

  • Nübel U, Garcia-Pichel F and Muyzer G 1997 PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63 3327–3332

    PubMed Central  PubMed  Google Scholar 

  • Pandey J, Pandey U and Tyagi HR 2000 Nutrient status and cyanobacterial diversity of a tropical fresh water lake. J. Environ. Biol. 21 133–138

    Google Scholar 

  • Patel KN and Sinha BK 2000 Study of the pollution load in the ponds of Burla area near Hirakund dam at Orissa. J. Environ. Pollut. 5 157–160

    Google Scholar 

  • Pielou EC 1966 The measurement of diversity in different types of biological collections. J. Theor. Biol. 13 131–144

    Article  Google Scholar 

  • Porazinska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA and Wall DH 2004 The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic Antarct. Alpine Res. 36 84–91

    Article  Google Scholar 

  • Psenner R 2002 Alpine waters in the interplay of global change: complex links-simple effects; in Global environmental change in alpine region, new horizons in environmental economics (eds) KW Steininger and H Weck-Hannemann (Edward Eldgar, Cheltenham: UK) p 271

  • Rao VN and Mahmood SK 1995 Nutrient status and biological characteristics of Habsiguda pond. J. Environ. Pollut. 2 31–34

    Google Scholar 

  • Rautio M and Vincent WF 2006 Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biol. 51 1038–1052

    Article  CAS  Google Scholar 

  • Roberts D, Mcminn A, Johnston N, Gore DB, Melles M and Cremer H 2001 An analysis of the limnology and sedimentary diatoms flora of four lakes and ponds from the Windmill Islands, East Antarctica. Antarct. Sci. 13 410–419

    Article  Google Scholar 

  • Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, Vanhoutte K and Vyverman W 2004 Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biol. 49 296–319

    Article  Google Scholar 

  • Safferman RS and Morris ME 1964 Growth characteristics of the blue-green algal virus LPP-1. J. Bacteriol. 88 771–775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seth KP, Seth MK and Misra PK 2006 A review of literature on algal flora of Himachal Pradesh. Phytotaxonomy 5 35–57

    Google Scholar 

  • Shannon CE 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27 379–423 & 623–656

  • Sharma AP 2000 Manual on fishery limnology (Pantnagar, Uttar Pradesh, India: G. B. Pant: University of Agriculture and Technology)

    Google Scholar 

  • Sidhu MK and Ahluwalia A 2011 Water quality and cyanobacterial diversity in Lower Western Himachal Lakes. Vegetos 24 165–170

    Google Scholar 

  • Simpson EH 1949 Measurement of diversity. Nature 163 688

    Article  Google Scholar 

  • Singh SM and Elster J 2007 Cyanobacteria in antarctic lake environments: A mini-review; in Algae and cyanobacteria in extreme environments (ed) J Seckbach (Netherlands: Kluwer Academic Publishers) pp 302–320

    Google Scholar 

  • Sommaruga R and Garcia-Pichel F 1999 UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch. Hydrobiol. 144 255–269

    CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M and Cohen-Bazire G 1971 Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol. Rev. 35 171–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stibal M, Šabacká M and Kaštovská K 2006 Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb. Ecol. 52 644–654

    Article  PubMed  Google Scholar 

  • Tang EPY, Tremblay R and Vincent WF 1997 Cyanobacterial dominance of polar freshwater ecosystems: Are high altitude mat formers are adapted to low temperature? J. Phycol. 33 171–178

    Article  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R and Wilmotte A 2003 Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxell (Mc Murdo Dry Valleys, Antarctica): A morphological and molecular approach. Appl. Environ. Microbiol. 69 5157–5169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taton A, Grubisic S, Balhasart P, Hodgson DA, Laybourn-Parry J and Wilmotte A 2006a Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol. Ecol. 57 272–289

    Article  CAS  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, et al. 2006b Polyphasic study of antarctic cyanobacterial strains. J. Phycol. 42 1257–1270

    Article  CAS  Google Scholar 

  • Tian C, Pei H, Hu W and Xie J 2012 Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. J. Environ. Sci. 24 1394–1402

    Article  CAS  Google Scholar 

  • Toma JJ 2011 Physical and chemical properties and algal composition of Derbendikhan lake, Sulaimania, Iraq. Curr. World Environ. 6 17–27

    CAS  Google Scholar 

  • Tranter M, Fountain AG, Fritsen CH, Lyons WB, Priscu JC, Statham PJ and Welch KA 2004 Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol. Process. 18 379–387

    Article  Google Scholar 

  • Vass KK 1980 On the trophic status and conservation of Kashmir lakes. Hydrobiology 68 9–15

    Article  Google Scholar 

  • Vézina S and Vincent WF 1997 Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada. (73°N, 80°W). Polar Biol. 17 523–534

    Article  Google Scholar 

  • Vincent WF and James MR 1996 Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea Sector, Antarctica. Biodivers. Conserv. 5 1451–1471

    Article  Google Scholar 

  • Vincent WF 2000 Cyanobacterial dominance in the polar regions; in The ecology of cyanobacteria (eds) BA Whitton and M Potts (Dordrecht, The Netherlands: Kluwer Academic Publishers) pp 321–340

    Google Scholar 

  • Vincent WF, Howard-Williams C and Broady PA 1993 Microbial communities and processes in Antarctic flowing waters; in Antarctic microbiology (ed) I Friedmann (New York: Wiley-Liss)

    Google Scholar 

  • Vincent WF, Mueller DR and Bonilla S 2004a Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiol. 48 103–112

    Article  Google Scholar 

  • Vincent WF, Mueller DR, Van Hove P and Howard-Willams C 2004b Glacial periods on early earth and implications for the evolution of life; in Origins: genesis, evolution and diversity of life (ed) J Seckbach (Dordrecht, The Netherlands: Kluwer Academic Publishers) pp 481–501

    Google Scholar 

  • Vopel K and Hawes I 2006 Photosynthetic performance of benthic microbial mats in lake Hoare, Antarctica. Limnol. Oceanogr. 51 1801–1812

    Article  Google Scholar 

  • Waterbury JB 2006 The Cyanobacteria- isolation, purification and identification; in The prokaryotes, Vol. 4 (eds) M Dworkin, S Falkow, E Rosenberg, KH Schleifer and E Stackebrandt (New York: Springer) pp 1053–1073

    Chapter  Google Scholar 

  • Wharton RA Jr, Parker BC and Simmons GM 1983 Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22 355–365

    Article  Google Scholar 

  • Williamson CE, Dodds W, Kratz TK and Palmer MA 2008 Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front. Ecol. Environ. 6 247–254

    Article  Google Scholar 

  • Zakhia F, Jungblut AD, Taton A, Vincent WF and Wilmotte A 2008 Cyanobacteria in cold ecosystems; in Psychrophiles: from biodiversity to biotechnology (eds) R Margesin, F Schinner, JC Marx and C Gerday (Berlin: Springer-Verlag) pp 121–135

    Google Scholar 

  • Zutshi DP, Subla BA, Khan MA and Wanganeo A 1980 Comparative limnology of nine lakes of Jammu and Kashmir Himalayas. Hydrobiology 72 101–112

    Article  CAS  Google Scholar 

  • Zutshi DP, Vishin N and Subla BA 1984 Nutrient status and plankton dynamics of a perennial pond. Proc. Ind. Nat. Sci. Acad. 50 577–581

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Head, Department of Botany, Punjabi University, Patiala, and Coordinator, SAP-II of University Grant Commission, New Delhi, for laboratory facilities. Laboratory facilities provided by the Director, CSIR – Institute of Himalayan Bioresource Technology, Palampur, are also acknowledged. YS thanks the Council of Scientific and Industrial Research, New Delhi, for providing financial assistance in the form of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J I S Khattar.

Additional information

Corresponding editor: S SHIVAJI

[Singh Y, Khattar JIS, Singh DP, Rahi P and Gulati A 2014 Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. J. Biosci. 39 1–15] DOI 10.1007/s12038-014-9458-4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y., Khattar, J.I.S., Singh, D.P. et al. Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. J Biosci 39, 643–657 (2014). https://doi.org/10.1007/s12038-014-9458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9458-4

Keywords

Navigation