Skip to main content
Log in

A comparison of zooplankton assemblages in Nansi Lake and Hongze Lake, potential influences of the East Route of the South-to-North Water Transfer Project, China

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Nansi Lake and Hongze Lake are both water storage lakes along the East Route of the South-to-North Water Transfer project (ESNT). Frequent changes in hydrologic properties are responsible factors for controlling the zooplankton community assemblages in both lakes, so we studied the possible influence of water transfer and environmental factors on zooplankton community structure and abundance. Zooplankton assemblages were investigated seasonally for one year in both lakes; a total of 133 and 122 zooplankton taxa were identified in Nansi Lake and Hongze Lake, respectively. The most dominant rotifer species were littoral, e.g., Keratella tecta, Keratella valga and Lecane lunaris in Nansi Lake and Brachionus angularis, Brachionus forficula and Polyarthra vulgaris in Hongze Lake. Comparatively, Nansi Lake had a higher Shannon-Wiener diversity index value (5.13), while Hongze Lake had a higher species richness index (4.21). The average number of zooplankton across seasons in Nansi Lake (protozoa: 774±63 ind./L, rotifers: 4 817±212 ind./L, cladocerans: 896±14 ind./L, copepod: 435±42 ind./L) was comparatively lower than Hongze Lake (protozoa: 1 238±63 ind./L, rotifers: 6 576±112 ind./L, cladocerans: 1 013±20 ind./L, copepod: 534±25 ind./L). Canonical correspondence analysis identified differing environmental gradients that were most responsible for influencing zooplankton communities in the two lakes (Hongze Lake: NH4-N, total nitrogen, transparency and pH; Nansi: pH, temperature and total phosphorus). Frequent changes related to water transfer in lakes favoured the diversity of rotifers and protozoa communities. Zooplankton habitat preference, changes in community structure and opportunistic peaks and extinction of certain taxa were also observed in the study lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated or analyses during this study are included in this published article.

References

  • APHA. 1992. Standard Methods for Examination of Water and Sewage and Wastewater. 18th edn. American Public Health Association, Washington, DC.

    Google Scholar 

  • Arndt H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia, 255(1): 231–246.

    Google Scholar 

  • Auer B, Elzer U, Arndt H. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research, 26(6): 697–709, https://doi.org/10.1093/plankt/fbh058.

    Google Scholar 

  • Balayla D J, Moss B. 2003. Spatial patterns and population dynamics of plant-associated Microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology, 37(4): 417–435, https://doi.org/10.1023/B:AECO.0000007045.85315.dc.

    Google Scholar 

  • Balkić A G, Ternjej I, Špoljar M. 2018. Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology, 11(1): e1917, https://doi.org/10.1002/eco.1917.

    Google Scholar 

  • Baranyi C, Hein T, Holarek C, Keckeis S, Schiemer F. 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology, 47(3): 473–482, https://doi.org/10.1046/j.1365-2427.2002.00822.x.

    Google Scholar 

  • Bērzinš B, Pejler B. 1989. Rotifer occurrence in relation to temperature. Hydrobiologia, 175(3): 223–231, https://doi.org/10.1007/bf00006092.

    Google Scholar 

  • Betsill R K, Van Den Avyle M J. 1994. Spatial heterogeneity of reservoir Zooplankton: a matter of timing? Hydrobiologia, 277(1): 63–70, https://doi.org/10.1007/bf00023986.

    Google Scholar 

  • Brooks J L, Dodson S I. 1965. Predation, body size, and composition of plankton. Science, 150(3692): 28–35, https://doi.org/10.1126/science.150.3692.28.

    Google Scholar 

  • Bunioto T C, Arcifa M S. 2007. Effects of food limitation and temperature on cladocerans from a tropical Brazilian lake. Aquatic Ecology, 41(4): 569–578, https://doi.org/10.1007/s10452-007-9114-2.

    Google Scholar 

  • Carlin B. 1943. Die planktonrotatorien des motalaström-zur taxonomie und Ökologie der planktonrotatorien. Lunds Universitets Limnologiska Institution, und kologie der planktonrotatorien, 5: 256.

    Google Scholar 

  • Carpenter S R, Kitchell J F, Hodgson J R. 1985. Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. BioScience, 35(10): 634–639, https://doi.org/10.2307/1309989.

    Google Scholar 

  • Chen L, Gao D Q, Shu F Y, Zhang H H. 2016. Zooplankton community structure and its relationship with environmental factors in Nasi Lake. Chinese Journal of Zoology, 51(1): 113–120. (in Chinese with English abstract)

    Google Scholar 

  • Chiang S C, Du N S. 1979. Fauna Sinica, Crustacea, Freshwater Cladocera. Science Press, Beijing. p.274–289. (in Chinese)

    Google Scholar 

  • Chu E G. 2001. Analysis on hydrological characteristic for Hongze Lake. Hydrology, 21: 56–59.

    Google Scholar 

  • Clarke K R, Warwick R M. 2001. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation. 2nd edn. PRIMER-E, Plymouth. 172p.

    Google Scholar 

  • Czerniawski R, Domagała J. 2010. Similarities in Zooplankton community between River Drawa and its two tributaries (Polish part of River Odra). Hydrobiologia, 638(1): 137–149, https://doi.org/10.1007/s10750-009-0036-y.

    Google Scholar 

  • Czerniawski R, Pilecka-Rapacz M. 2011. Summer zooplankton in small rivers in relation to selected conditions. Central European Journal of Biology, 6(4): 659–674.

    Google Scholar 

  • Derry A M, Prepas E E, Hebert P D N. 2003. A comparison of zooplankton communities in saline lakewater with variable anion composition. Hydrobiologia, 505(1): 199–215, https://doi.org/10.1023/b:hydr.0000007414.12566.19.

    Google Scholar 

  • Dodson S I, Lillie R A, Will-Wolf S. 2005. Land use, water chemistry, aquatic vegetation, and Zooplankton community structure of shallow lakes. Ecological Applications, 15(4): 1 191–1 198, https://doi.org/10.1890/04-1494.

    Google Scholar 

  • Dodson S. 1990. Predicting diel vertical migration of zooplankton. Limnology and Oceanography, 35(5): 1 195–1 200, https://doi.org/10.4319/lo.1990.35.5.1195.

    Google Scholar 

  • Dodson S. 1991. Species richness of crustacean zooplankton in European lakes of different sizes. SIL Proceedings, 1922–2010, 24(2): 1 223–1 229.

    Google Scholar 

  • Dodson S. 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography, 37(4): 848–856, https://doi.org/10.4319/lo.1992.37A0848.

    Google Scholar 

  • Du X, Wang Q D, Zhang C W, Li W, Feng W S, Zhang T L, Liu J S, Li Z J. 2014. Community structure of rotifers in relation to environmental factors in Lake Hongze. Journal of Lake Sciences, 26(2): 269–276. (in Chinese with English abstract)

    Google Scholar 

  • Ejsmont-Karabin J, Kruk M. 1998. Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia, 387: 241–249, https://doi.org/10.1023/a:1017081407452.

    Google Scholar 

  • Fornarelli R, Antenucci J P. 2011. The impact of transfers on water quality and the disturbance regime in a reservoir. Water Research, 45(18): 5 873–5 885.

    Google Scholar 

  • Fryer G. 1985. Crustacean diversity in relation to the size of water bodies: some facts and problems. Freshwater Biology, 15(3): 347–361, https://doi.org/10.1111/j.1365-2427.1985.tb00206.x.

    Google Scholar 

  • Galkovskaya G A, Molotkov D V, Mityanina I F. 2006. Species diversity and spatial structure of pelagic zooplankton in a lake of glacial origin during summer stratification. Hydrobiologia, 568(1): 31–40, https://doi.org/10.1007/s10750-006-0337-3.

    Google Scholar 

  • Gasith A, Gafny S. 1990. Effects of water level fluctuation on the structure and function of the littoral zone. In: Tilzer M M, Serruya C eds. Large Lakes: Ecological Structure and Function. Springer, Berlin. p.156–173.

    Google Scholar 

  • Gilbert J J. 1966. Rotifer ecology and embryological induction. Science, 151(3715): 1 234–1 237.

    Google Scholar 

  • Gong J X, Duan D X, Wang Z Z, Du X H, Zhang J L, Liu H C, Chen J P, Sun D. 2010. Research and analysis on the plankton of Nansi Lake. Journal of Yangtze University (Natural Science Edition), 7(1): 39–42, 52. (in Chinese with English abstract)

    Google Scholar 

  • Gruberts D, Druvietis I, Parele E, Paidere J, Poppels A, Prieditis J, Skute A. 2007. Impact of hydrology on aquatic communities of floodplain lakes along the Daugava River (Latvia). Hydrobiologia, 584: 223–237.

    Google Scholar 

  • Havel J E, Eisenbacher E M, Black A A. 2000. Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks. Aquatic Ecology, 34(1): 63–76, https://doi.org/10.1023/a:1009918703131.

    Google Scholar 

  • Hessen D O, Andersen T, Faafeng B A. 1995. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Canadian Journal of Fisheries and Aquatic Sciences, 52(4): 733–742, https://doi.org/10.1139/f95-073.

    Google Scholar 

  • Hu L M, Hu W P, Zhai S H, Wu H Y. 2010. Effects on water quality following water transfer in Lake Taihu, China. Ecological Engineering, 36(4): 471–481, https://doi.org/10.1016/j.ecoleng.2009.11.016.

    Google Scholar 

  • Huang X F, Chen W M, Cai Q M. 1999. Survey, Observation and Analysis of Lake Ecology. Standards Press of China, Beijing. 247p. (in Chinese)

    Google Scholar 

  • Jeppesen E, Søndergaard M, Kanstrup E, Petersen B, Eriksen R B, Hammershøj M, Mortensen E, Jensen J P, Have A. 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia, 275(1): 15–30, https://doi.org/10.1007/bf00026696.

    Google Scholar 

  • Ji G H, Wang X Y, Wang L Q. 2013. Planktonic Rotifers in a subtropical shallow Lake: succession, relationship to environmental factors, and use as bioindicators. The Scientific World Journal, 2013: 702942.

    Google Scholar 

  • Johannsson O E, Mills E L, O’Gorman R. 1991. Changes in the nearshore and offshore zooplankton communities in Lake Ontario: 1981–88. Canadian Journal of Fisheries and Aquatic Sciences, 48(8): 1 546–1 557, https://doi.org/10.1139/f91-183.

    Google Scholar 

  • Karatayev A Y, Burlakova L E, Dodson S I. 2005. Community analysis of Belarusian lakes: relationship of species diversity to morphology, hydrology and land use. Journal of Plankton Research, 27(10): 1 045–1 053, https://doi.org/10.1093/plankt/fbi072.

    Google Scholar 

  • Kobayashi T, Shiel R J, Gibbs P, Dixon P I. 1998. Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers. Hydrobiologia, 377(1–3): 133–145.

    Google Scholar 

  • Korponai J, Mátyás K, Paulovits G, Tátrai I, Kovács N. 1997. The effect of different fish communities on the cladoceran plankton assemblages of the Kis-Balaton Reservoir, Hungary. Hydrobiologia, 360(1): 211–221, https://doi.org/10.1023/a:1003125621301.

    Google Scholar 

  • Koste V W, Tobias W. 1987. Zur Radertiefauna des Sankaranistausees im Einzugsgebiet des Niger, Republik Mali Westafrika (Aschelminthes: Rotatoria). Archieve fur Hydrobiologie, 108: 499–515.

    Google Scholar 

  • Koste W, Shiel R. 1991. Rotifera from Australian inland waters. VII. Notommatidae (Rotifera: Monogononta). Transactions of the Royal Society of South Australia, 115(3): 111–159.

    Google Scholar 

  • Kufel L, Leśniczuk S. 2014. Hydrological connectivity as most probable key driver of chlorophyll and nutrients in oxbow lakes of the Bug River (Poland). Limnologica, 46: 94–98.

    Google Scholar 

  • Leira M, Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia, 613(1): 171–184, https://doi.org/10.1007/s10750-008-9465-2.

    Google Scholar 

  • Lepš J, Šmilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York. 269p.

    Google Scholar 

  • Lin M L, Lek S, Ren P, Li S H, Li W, Du X, Guo C B, Gozlan R E, Li Z J. 2017. Predicting impacts of south-to-north water transfer project on fish assemblages in Hongze Lake, China. Journal of Applied Ichthyology, 33(3): 395–402, https://doi.org/10.1111/jai.13251.

    Google Scholar 

  • Liu W L, Deng W, Wang G X, Li A M, Zhou J. 2009. Aquatic macrophyte status and variation characteristics in the past 50 years in Hongzehu Lake. Journal of Hydroecology, 2(6): 1–8. (in Chinese with English abstract)

    Google Scholar 

  • Maier G. 1989. The seasonal cycle of Thermocyclops crassus (Fischer, 1853) (Copepoda: cyclopoida) in a shallow, eutrophic lake. Hydrobiologia, 178(1): 43–58, https://doi.org/10.1007/bf00006112.

    Google Scholar 

  • Matsumura-Tundisi T, Tundisi J G. 2005. Plankton richness in a eutrophic reservoir (Barra Bonita Reservoir, SP, Brazil). Hydrobiologia, 542(1): 367–378, https://doi.org/10.1007/s10750-004-9461-0.

    Google Scholar 

  • Matthews W, Schorrs M, Meador M. 1996. Effects of experimentally enhanced flows on fishes of a small Texas (U.S.A.) stream: assessing the impact of interbasin transfer. Freshwater Biology, 35(2): 349–362, https://doi.org/10.1046/j.1365-2427.1996.00494.x.

    Google Scholar 

  • May L. 1983. Rotifer occurrence in relation to water temperature in Loch Leven, Scotland. Hydrobiologia, 104(1): 311–315, https://doi.org/10.1007/bf00045983.

    Google Scholar 

  • McQueen D J, Post J R, Mills E L. 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43(8): 1 571–1 581, https://doi.org/10.1139/f86-195.

    Google Scholar 

  • Meng J, Yu Z D, Miao M S, Kong Q, Zhang Y R, Liu J. 2017. Differentiated responses of plankton and zoobenthos to water quality based on annual and seasonal analysis in a freshwater lake. Polish Journal of Environmental Studies, 26(2): 755–764.

    Google Scholar 

  • Northcote T G. 1988. Fish in the structure and function of freshwater ecosystems: a “Top-down” view. Canadian Journal of Fisheries and Aquatic Sciences, 45(2): 361–379, https://doi.org/10.1139/f88-044.

    Google Scholar 

  • Padial A A, Thomaz S M, Agostinho A A. 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia, 624(1): 161–170, https://doi.org/10.1007/s10750-008-9690-8.

    Google Scholar 

  • Padisák J, Barbosa F A R, Borbély G, Borics G, Chorus I, Espíndola E, Heinze R, Rocha O, Törökné A K, Vasas G. 2000. Phytoplankton composition, biodiversity and a pilot survey of toxic cyanoprokaryotes in a large cascading reservoir system (Tietê Basin, Brazil). SIL Proceedings, 1922–2010, 27(5): 2 734–2 742.

    Google Scholar 

  • Patalas K. 1971. Crustacean plankton communities in forty-five lakes in the Experimental Lakes Area, northwestern Ontario. Journal of the Fisheries Research Board of Canada, 28(2): 231–244.

    Google Scholar 

  • Pinel-Alloul B, Méthot G, Verreault G, Vigneault Y. 1990. Zooplankton species associations in Quebec Lakes: variation with abiotic factors, including natural and anthropogenic acidification. Canadian Journal of Fisheries and Aquatic Sciences, 47(1): 110–121, https://doi.org/10.1139/f90-011.

    Google Scholar 

  • Pinto-Coelho R, Pinel-Alloul B, Méthot G, Havens K E. 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences, 62(2): 348–361, https://doi.org/10.1139/f04-178.

    Google Scholar 

  • Poff N L, Allan J D, Bain M B, Karr J R, Prestegaard K L, Richter B D, Sparks R E, Stromberg J C. 1997. The natural flow regime. BioScience, 47(11): 769–784.

    Google Scholar 

  • Pourriot R, Tifnouti A, Rougier C. 1994. Spatial-distribution of zooplankton in a natural reservoir-the Lalla-Takerkoust in Morocco. Archiv für Hydrobiologie, 130(1): 113–127.

    Google Scholar 

  • Sampaio E V, López C M. 2000. Zooplankton community composition and some limnological aspects of an oxbow lake of the Paraopeba River, São Francisco River Basin, Minas Gerais, Brazil. Brazilian Archives of Biology and Technology, 43(3): 285–293.

    Google Scholar 

  • Shen C J, Song D X. 1979. Calanoida, sars, 1903. In: Research Group of Carcinology, Institute of Zoology, Academia Sinica eds. Fauna Sinica, Crustacea, Freshwater Copepoda. Science Press, Beijing. p.53–163. (in Chinese)

    Google Scholar 

  • Shen Y F. 1983. Protozoa of the Tibetan Plateau. In: Jiang X Z, Shen Y F, Gong X J eds. Aquatic Invertebrates of the Tibetan Plateau. Science Press, Beijing. p.48–100.

    Google Scholar 

  • Shiel R J. 1995. A guide to Identification of Rotifers, Cladocerans and Copepods from Australian Inland Waters. CRCFE, Identification Guide No 3, Murray-Darling Freshwater Research Centre, Albury, NSW.

    Google Scholar 

  • Simões N R, Colares M A M, Lansac-Tôha F A, Bonecker C C. 2013. Zooplankton species richness-productivity relationship: confronting monotonic positive and hump-shaped models from a local perspective. Austral Ecology, 38(8): 952–958, https://doi.org/10.1111/aec.12038.

    Google Scholar 

  • Smirnov N N, Timms B V. 1983. A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum, Supplement, 1: 1–132.

    Google Scholar 

  • Snaddon C D, Davies B R. 1998. A preliminary assessment of the effects of a small South African inter-basin water transfer on discharge and invertebrate community structure. Regulated Rivers: Research & Management, 14(5): 421–441.

    Google Scholar 

  • Sodré-Neto L, Araújo M F F. 2008. Spatial and temporal fluctuations in bacterioplankton and correlated abiotic variables in eutrophic environments of the Brazilian semiarid region. Acta Limnologica Brasiliensia, 20(4): 325–331.

    Google Scholar 

  • Stemberger R S, Larsen D P, Kincaid T M. 2001. Sensitivity of zooplankton for regional lake monitoring. Canadian Journal of Fisheries and Aquatic Sciences, 58(11): 2 222–2 232, https://doi.org/10.1139/f01-164.

    Google Scholar 

  • Tackx M L M, De Pauw N, Van Mieghem R, Azémar F, Hannouti A, Van Damme S, Fiers F, Daro N, Meire P. 2004. Zooplankton in the Schelde estuary, Belgium and the Netherlands. Spatial and temporal patterns. Journal of Plankton Research, 26(2): 133–141, https://doi.org/10.1093/plankt/fbh016.

    Google Scholar 

  • Tai A Y, Chen G X. 1979. Cyclopoida. In: Chen C J ed. Fauna Sinica, Crustacea, Freshwater Copepoda. Science Press, Peking, China. p.406–410.

    Google Scholar 

  • Tai A Y, Song Y Z. 1979. Harpacticoida Sars, 1903. In: Shen C J ed. Fauna Sinica Crustacea, Freshwater Copepoda. Science Press, Peking, China.

    Google Scholar 

  • Ter Braak C J F, Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide. Software for Canonical Community Ordination (version 4.5). Centre for Biometry Wageningen, Wageningen.

    Google Scholar 

  • Ter Braak C J F, Verdonschot P F M. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57(3): 255–289.

    Google Scholar 

  • Vanni M J. 1988. Freshwater zooplankton community structure: introduction of large invertebrate predators and large herbivores to a small species community. Canadian Journal of Fisheries and Aquatic Sciences, 45(10): 1 758–1 770.

    Google Scholar 

  • Wallace R L, Snell T W, Ricci C, Nogrady T. 2006. Rotifera Part 1: Biology, Ecology and Systematics. 2nd edn. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Kenobi Productions Gent/Backhuys, The Netherlands.

    Google Scholar 

  • Wang Q, Chen J Y. 1999. Formation and evolution of Hongze Lake and the Huaihe River mouth along the lake. Journal of Lake Sciences, 11(3): 237–244. (in Chinese with English abstract)

    Google Scholar 

  • Wen X L, Xi Y L, Qian F P, Zhang G, Xiang X L. 2011. Comparative analysis of rotifer community structure in five subtropical shallow lakes in East China: role of physical and chemical conditions. Hydrobiologia, 661: 303–316.

    Google Scholar 

  • Winemiller K O, Fitzgerald D B, Bower L M, Pianka E R. 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 18(8): 737–751, https://doi.org/10.1111/ele.12462.

    Google Scholar 

  • Wissel B, Ramacharan C W. 2003. Plasticity of vertical distribution of crustacean zooplankton in lakes with varying levels of water colour. Journal of Plankton Research, 25(9): 1 047–1 057, https://doi.org/10.1093/plankt/25.9.1047.

    Google Scholar 

  • Wolcox D A, Meeker J E. 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in Northern Minnesota. Wetlands, 12(3): 192–203.

    Google Scholar 

  • Xiang X L, Xi Y L, Zhang J Y, Ma Q, Wen X L. 2010. Effects of temperature on survival, reproduction, and morphotype in offspring of two Brachionus calyciflorus (Rotifera) Morphotypes. Journal of Freshwater Ecology, 25(1): 9–18, https://doi.org/10.1080/02705060.2010.9664352.

    Google Scholar 

  • Yan N D. 1986. Empirical prediction of crustacean zooplankton biomass in nutrient-poor Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 43(4): 788–796, https://doi.org/10.1139/f86-097.

    Google Scholar 

  • Yang L F. 1993. Further discussion on the major conditions of the existence of Ostracoda—Taking Hongze Lake in China as example. Science in China (Series B), 36(3): 358–365.

    Google Scholar 

  • Yang S J. 2003. Protection and sustainable use of biodiversity of west lakeside zone of Hongze Lake. Bulletin of Soil and Water Conservation, 23(5): 62–65, 69. (in Chinese with English abstract)

    Google Scholar 

  • Zhai S J, Hu W P, Zhu Z C. 2010. Ecological impacts of water transfers on Lake Taihu from the Yangtze River, China. Ecological Engineering, 36(4): 406–420, https://doi.org/10.1016/j.ecoleng.2009.11.007.

    Google Scholar 

  • Zhang Q F. 2009. The south-to-north water transfer project of China: environmental implications and monitoring strategy. Journal of the American Water Resources Association, 45(5): 1 238–1 247.

    Google Scholar 

Download references

Acknowledgment

We thank the Institute of Hydrobiology for hosting this research work. We would also like to thank SONG Yiqing for supporting statistical analysis on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Cheng.

Ethics declarations

There are no conflicts of interest arisen by authors.

Additional information

Supported by the Service Project of Special Institute of Chinese Academy of Sciences (No. Y55Z06), the Key Project in Frontier Science of Chinese Academy of Sciences (No. QYZDB-SSW-SMC041), the National Science Foundation of Jiangsu Province, China (No. BK20141268), and the National Natural Science Foundation of China (No. 31400486a)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, K.R., Zhao, S., Chen, Y. et al. A comparison of zooplankton assemblages in Nansi Lake and Hongze Lake, potential influences of the East Route of the South-to-North Water Transfer Project, China. J. Ocean. Limnol. 39, 623–636 (2021). https://doi.org/10.1007/s00343-020-9288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-9288-1

Keyword

Navigation