Skip to main content
Log in

Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Biological nitrogen fixation is accomplished by prokaryotes through the catalytic action of complex metalloenzyme, nitrogenase. Nitrogenase is a two-protein component system comprising MoFe protein (NifD&K) and Fe protein (NifH). NifH shares structural and mechanistic similarities as well as evolutionary relationships with light-independent protochlorophyllide reductase (BchL), a photosynthesis-related metalloenzyme belonging to the same protein family. We performed a comprehensive bioinformatics analysis of the NifH/BchL family in order to elucidate the intrinsic functional diversity and the underlying evolutionary mechanism among the members. To analyse functional divergence in the NifH/BchL family, we have conducted pair-wise estimation in altered evolutionary rates between the member proteins. We identified a number of vital amino acid sites which contribute to predicted functional diversity. We have also made use of the maximum likelihood tests for detection of positive selection at the amino acid level followed by the structure-based phylogenetic approach to draw conclusion on the ancient lineage and novel characterization of the NifH/BchL protein family. Our investigation provides ample support to the fact that NifH protein and BchL share robust structural similarities and have probably deviated from a common ancestor followed by divergence in functional properties possibly due to gene duplication

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abascal F, Zardoya R and Posada D 2005 ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21 2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Ahmad S, Gromiha M, Fawareh H and Sarai A 2004 ASAView: database and tool for solvent accessibility representation in proteins. BMC Bioinform. 5 51

    Article  Google Scholar 

  • Balaji S and Srinivasan N 2007 Comparison of sequence-based and structure-based phylogenetic trees of homologous proteins: Inferences on protein evolution. J. Biosci. 32 83–96

    Article  PubMed  CAS  Google Scholar 

  • Bishop PE and Premakumar R 1992 Alternative nitrogen fixation systems; in Biological nitrogen fixation (eds) G Stacey, RH Burris and HJ Evans (New York: Chapman and Hall) pp 736–762

    Google Scholar 

  • Bothe H, Ferguson SJ and Newton WE 2007 Biology of the nitrogen cycle (Amsterdam; Boston: Elsevier)

    Google Scholar 

  • Boyd ES, Hamilton TL and Peters JW 2011 An alternative path for the evolution of biological nitrogen fixation. Front. Microbiol. 2 205

    Article  PubMed  Google Scholar 

  • Burgess BK and Lowe DJ 1996 Mechanism of Molybdenum Nitrogenase. Chem. Rev. 96 2983–3012

    Article  PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A 1993 Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc. Natl. Acad. Sci. USA 90 7134–7138

    Article  PubMed  CAS  Google Scholar 

  • de Boer PA, Crossley RE and Rothfield LI 1992 Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J. Bacteriol. 174 63–70

    PubMed  Google Scholar 

  • Dermitzakis ET and Clark AG 2001 Differential selection after duplication in mammalian developmental genes. Mol. Biol. Evol. 18 557–562

    Article  PubMed  CAS  Google Scholar 

  • Fani R, Gallo R and Lio P 2000 Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J. Mol. Evol. 51 1–11

  • Felsenstein J 1989 PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5 164–166

    Google Scholar 

  • Fitch WM and Margoliash E 1967 Construction of phylogenetic trees. Science 155 279–284

    Article  PubMed  CAS  Google Scholar 

  • Gu X 1999 Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol. 16 1664–1674

    Article  PubMed  CAS  Google Scholar 

  • Gu X 2001 Maximum-likelihood approach for gene family evolution under functional divergence. Mol. Biol. Evol. 18 453–464

    Article  PubMed  CAS  Google Scholar 

  • Guindon S and Gascuel O 2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 696–704

    Article  PubMed  Google Scholar 

  • Holm L and Sander C 1993 Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233 123–138

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Fischer D and Eisenberg D 1999 Analysis of heregulin symmetry by weighted evolutionary tracing. Protein Eng. 12 943–951

    Article  PubMed  CAS  Google Scholar 

  • Markowitz VM, Ivanova N, Palaniappan K, Szeto E, Korzeniewski F, Lykidis A, Anderson I, Mavromatis K, et al. 2006 An experimental metagenome data management and analysis system. Bioinformatics 22 e359–367

    Article  PubMed  CAS  Google Scholar 

  • Postgate J and Eady R 1988 The evolution of biological nitrogen fixation; in Nitrogen fixation: hundred years after (eds) H Bothe, FJ de Bruijn, and WE Newton (Stuttgart: Gustav Fischer) pp 31–40

    Google Scholar 

  • Postgate JR 1982 The fundamentals of nitrogen fixation (Cambridge: Cambridge Univ Press)

    Google Scholar 

  • Rees DC 2002 Great metalloclusters in enzymology. Annu. Rev. Biochem. 71 221–246

    Article  PubMed  CAS  Google Scholar 

  • Rees DC, Akif Tezcan F, Haynes CA, Walton MY, Andrade S, Einsle O and Howard JB 2005 Structural basis of biological nitrogen fixation. Philos. Transact. A. Math. Phys. Eng. Sci. 363 971–984; discussion 1035–1040

    Google Scholar 

  • Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y and Reinbothe S 2010 Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci. 15 614–624

    Article  PubMed  CAS  Google Scholar 

  • Schlessman JL, Woo D, Joshua-Tor L, Howard JB and Rees DC 1998 Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. J. Mol. Biol. 280 669–685

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Sur S, Tisa LS, Bothra AK, Thakur S and Mondal UK 2010 Homology modelling of the Frankia nitrogenase iron protein. Symbiosis 50 37–44

    Article  CAS  Google Scholar 

  • Suyama M, Torrents D and Bork P 2006 PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34 W609–612

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M and Kumar S 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thakur S, Bothra AK and Sen A 2012 In silico studies of NifH protein structure and its post-translational modification in Bradyrhizobium sp. ORS278. Int. J. Pharm. Bio. Sci. 3 B22 - B32

    Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Yang Z 1997 PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13 555–556

    PubMed  CAS  Google Scholar 

  • Zehr JP, Harris D, Dominic B and Salerno J 1997 Structural analysis of the Trichodesmium nitrogenase iron protein: implications for aerobic nitrogen fixation activity. FEMS Microbial. Lett. 153 303–309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, India, for providing financial help in setting up Bioinformatics Centre, in the Department of Botany, University of North Bengal. ST would like to thank the CSIR for providing the CSIR-SRF research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Sen.

Additional information

[Thakur S, Bothra AK and Sen A 2013 Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family. J. Biosci. 38 1–8] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, S., Bothra, A.K. & Sen, A. Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family. J Biosci 38, 733–740 (2013). https://doi.org/10.1007/s12038-013-9360-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9360-5

Keywords

Navigation