Skip to main content
Log in

Inactivation of Tor proteins affects the dynamics of endocytic proteins in early stage of endocytosis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Tor2 is an activator of the Rom2/Rho1 pathway that regulates α-factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of α-factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic proteins. We report here that endocytic proteins, Abp1 and Rvs167, are less recruited to endocytic sites not only in tor2 but also tor1 mutants. Furthermore, we found that the endocytic proteins Rvs167 and Sjl2 are completely mistargeted to the cytoplasm in tor1Δtor2 ts double mutant cells. We also demonstrate here that the efficiency of endocytic internalization or scission in all tor mutants was drastically decreased. In agreement with the Sjl2 mislocalization, we found that in tor1Δtor2 ts double mutant cells, as well as other tor mutant cells, the overall PIP2 level was dramatically increased. Finally, the cell wall chitin content in tor2 ts and tor1Δtor2ts mutant cells was also significantly increased. Taken together, both functional Tor proteins, Tor1 and Tor2, are essentially required for proper endocytic protein dynamics at the early stage of endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abe N, Inoue T, Galvez T, Klein L and Meyer T 2008 Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor. J. Cell Sci. 121 1488–1494

    Article  PubMed  CAS  Google Scholar 

  • Aronova S, Wedaman K, Anderson S, Yates J, 3rd, and Powers T 2007 Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol. Biol. Cell 18 2779–2794

    Article  PubMed  CAS  Google Scholar 

  • Balguerie A, Sivadon P, Bonneu M and Aigle M 1999 Rvs167p, the budding yeast homolog of amphiphysin, colocalizes with actin patches. J. Cell Sci. 112 2529–2537

    Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF and Hall MN 1996 TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7 25–42

    PubMed  CAS  Google Scholar 

  • Berchtold D and Walther TC 2009 TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 20 1565–1575

    Article  PubMed  CAS  Google Scholar 

  • Bickle M, Delley PA, Schmidt A and Hall MN 1998 Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J. 17 2235–2245

    Article  PubMed  CAS  Google Scholar 

  • Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK and Livi GP 1993 Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol. Cell. Biol. 13 6012–6023

    PubMed  CAS  Google Scholar 

  • Cardenas ME and Heitman J 1995 FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. EMBO J. 14 5892–5907

    PubMed  CAS  Google Scholar 

  • Chen DC, Yang BC and Kuo TT 1992 One-step transformation of yeast in stationary phase. Curr. Genet. 21 83–84

    Article  PubMed  CAS  Google Scholar 

  • Colwill K, Field D, Moore L, Friesen J and Andrews B 1999 In vivo analysis of the domains of yeast Rvs167p suggests Rvs167p function is mediated through multiple protein interactions. Genetics 152 881–893

    PubMed  CAS  Google Scholar 

  • Cope MJ, Yang S, Shang C and Drubin DG 1999 Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J. Cell Biol. 144 1203–1218

    Article  PubMed  CAS  Google Scholar 

  • Dallies N, Francois J and Paquet V 1998 A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14 1297–1306

    Article  PubMed  CAS  Google Scholar 

  • deHart AK, Schnell JD, Allen DA, Tsai JY and Hicke L 2003 Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol. Biol. Cell 14 4676–4684

    Article  PubMed  CAS  Google Scholar 

  • Douglas LM, Martin SW and Konopka JB 2009 BAR domain proteins Rvs161 and Rvs167 contribute to Candida albicans endocytosis, morphogenesis, and virulence. Infect. Immun. 77 4150–4160

    Article  PubMed  CAS  Google Scholar 

  • Engqvist-Goldstein AE and Drubin DG 2003 Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19 287–332

    Article  PubMed  CAS  Google Scholar 

  • Galletta BJ, Chuang DY and Cooper JA 2008 Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol. 6e1

  • Goode BL, Rodal AA, Barnes G and Drubin DG 2001 Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J. Cell Biol. 153 627–634

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Stolz LE, Lemrow SM and York JD 1999 SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274 12990–12995

    Article  PubMed  CAS  Google Scholar 

  • Hall MN 2008 mTOR-what does it do? Transplant. Proc. 40 S5–S8

    Article  PubMed  CAS  Google Scholar 

  • Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R and Hall MN 1994 TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell 5 105–118

    PubMed  CAS  Google Scholar 

  • Idrissi FZ, Grotsch H, Fernandez-Golbano IM, Presciatto-Baschong C, Riezman H and Geli MI 2008 Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J. Cell Biol. 180 1219–1232

    PubMed  CAS  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A and Hall MN 2004 Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6 1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Sun Y and Drubin DG 2003 A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115 475–487

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Toret CP and Drubin DG 2005 A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123 305–320

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM 2002 mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110 163–175

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Galletta BJ, Schmidt KO, Chang FS, Blumer KJ and Cooper JA 2006 Actin-based motility during endocytosis in budding yeast. Mol. Biol. Cell 17 1354–1363

    Article  PubMed  CAS  Google Scholar 

  • Kukulski W, Schorb M, Kaksonen M and Briggs JA 2012 Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150 508–520

    Article  PubMed  CAS  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR and Hall MN 1993 Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73 585–596

    Article  PubMed  CAS  Google Scholar 

  • Laplante M and Sabatini DM 2012 mTOR signaling in growth control and disease. Cell 149 274–293

    Article  PubMed  CAS  Google Scholar 

  • Lila T and Drubin DG 1997 Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol. Biol. Cell 8 367–385

    PubMed  CAS  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P and Hall MN 2002 Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10 457–468

    Article  PubMed  CAS  Google Scholar 

  • Logan MR and Mandato CA 2006 Regulation of the actin cytoskeleton by PIP2 in cytokinesis. Biol. Cell 98 377–388

    Article  PubMed  CAS  Google Scholar 

  • Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P and Pringle JR 1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14 953–961

    Article  PubMed  CAS  Google Scholar 

  • Lunn JA, Wong H, Rozengurt E and Walsh JH 2000 Requirement of cortical actin organization for bombesin, endothelin, and EGF receptor internalization. Am. J. Physiol. Cell Physiol. 279 C2019–C2027

    PubMed  CAS  Google Scholar 

  • Manning BD and Cantley LC 2007 AKT/PKB signaling: navigating downstream. Cell 129 1261–1274

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz HS, Heuser J, McGraw TE and Ryan TA 2003 Targeted chemical disruption of clathrin function in living cells. Mol. Biol. Cell 14 4437–4447

    Article  PubMed  CAS  Google Scholar 

  • Murphy ER, Boxberger J, Colvin R, Lee SJ, Zahn G, Loor F and Kim K 2011 Pil1, an eisosome organizer, plays an important role in the recruitment of synaptojanins and amphiphysins to facilitate receptor-mediated endocytosis in yeast. Eur. J. Cell Biol. 90 825–833

    Article  PubMed  CAS  Google Scholar 

  • Nannapaneni S, Wang D, Jain S, Schroeder B, Highfill C, Reustle L, Pittsley D, Maysent A, Moulder S, McDowell R, et al. 2010 The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur. J. Cell Biol. 89 499–508

    Article  PubMed  CAS  Google Scholar 

  • Newpher TM, Smith RP, Lemmon V and Lemmon SK 2005 In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev. Cell 9 87–98

    Article  PubMed  CAS  Google Scholar 

  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR and McMahon HT 2004 BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303 495–499

    Article  PubMed  CAS  Google Scholar 

  • Quintero-Monzon O, Rodal AA, Strokopytov B, Almo SC and Goode BL 2005 Structural and functional dissection of the Abp1 ADFH actin-binding domain reveals versatile in vivo adapter functions. Mol. Biol. Cell 16 3128–3139

    Article  PubMed  CAS  Google Scholar 

  • Ren G, Vajjhala P, Lee JS, Winsor B and Munn AL 2006 The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol. Mol. Biol. Rev. 70 37–120

    Article  PubMed  CAS  Google Scholar 

  • Reyes A, Sanz M, Duran A and Roncero C 2007 Chitin synthase III requires Chs4p-dependent translocation of Chs3p into the plasma membrane. J. Cell Sci. 120 1998–2009

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Kunz J and Hall MN 1996 TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Nat. Acad. Sci. USA 93 13780–13785

    Article  PubMed  CAS  Google Scholar 

  • Sivadon P, Crouzet M and Aigle M 1997 Functional assessment of the yeast Rvs161 and Rvs167 protein domains. FEBS Lett. 417 21–27

    Article  PubMed  CAS  Google Scholar 

  • Smaczynska-de R II, Allwood EG, Mishra R, Booth WI, Aghamohammadzadeh S, Goldberg MW and Ayscough KR 2012 Yeast dynamin Vps1 and amphiphysin Rvs167 function together during endocytosis. Traffic 13 317–328

    Article  Google Scholar 

  • Srinivasan S, Seaman M, Nemoto Y, Daniell L, Suchy SF, Emr S, De Camilli P and Nussbaum R 1997 Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur. J. Cell Biol. 74 350–360

    PubMed  CAS  Google Scholar 

  • Stefan CJ, Audhya A and Emr SD 2002 The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell 13 542–557

    Article  PubMed  CAS  Google Scholar 

  • Stefan CJ, Padilla SM, Audhya A and Emr SD 2005 The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol. Cell. Biol. 25 2910–2923

    Article  PubMed  CAS  Google Scholar 

  • Stolz LE, Huynh CV, Thorner J and York JD 1998 Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics 148 1715–1729

    PubMed  CAS  Google Scholar 

  • Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE and Hall MN 2008 TOR1 and TOR2 have distinct locations in live cells. Eukaryotic Cell 7 1819–1830

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Carroll S, Kaksonen M, Toshima JY and Drubin DG 2007 PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J. Cell Biol. 177 355–367

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Slepnev VI, Haucke V and De Camilli P 1999 Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1 33–39

    Article  PubMed  CAS  Google Scholar 

  • Toret CP, Lee L, Sekiya-Kawasaki M and Drubin DG 2008 Multiple pathways regulate endocytic coat disassembly in Saccharomyces cerevisiae for optimal downstream trafficking. Traffic 9 848–859

    Article  PubMed  CAS  Google Scholar 

  • Warren DT, Andrews PD, Gourlay CW and Ayscough KR 2002 Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics. J. Cell Sci. 115 1703–1715

    PubMed  CAS  Google Scholar 

  • Wedaman KP, Reinke A, Anderson S, Yates J, 3rd, McCaffery JM and Powers T 2003 Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14 1204–1220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Hall (University of Basel) for providing tor mutant strains (tor1Δ, tor2 ts , tor1Δtor2 ts, and tor2 overexpressing mutant). This work was supported by a National Scientific Foundation Grant 0923024 (to K KIM) and by thesis funding from Missouri State University (B Tenay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungtae Kim.

Additional information

Corresponding editor: VEENA K PARNAIK

[Tenay B, Kimberlin E, Williams M, Denise J , Fakilahyel J and Kim K 2013 Inactivation of Tor proteins affects the dynamics of endocytic proteins in early stage of endocytosis. J. Biosci. 38 1–11] DOI 10.1007/s12038-013-9326-7

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/jun2013/supp/tenay.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenay, B., Kimberlin, E., Williams, M. et al. Inactivation of Tor proteins affects the dynamics of endocytic proteins in early stage of endocytosis. J Biosci 38, 351–361 (2013). https://doi.org/10.1007/s12038-013-9326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9326-7

Keywords

Navigation