Skip to main content
Log in

The long life of an endocytic patch that misses AP-2

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Endocytosis is the process by which cells regulate extracellular fluid uptake and internalize molecules bound to their plasma membrane. This process requires the generation of protein-coated vesicles. In clathrin-mediated endocytosis (CME) the assembly polypeptide 2 (AP-2) adaptor facilitates rapid endocytosis of some plasma membrane receptors by mediating clathrin recruitment to the endocytic site and by connecting cargoes to the clathrin coat. While this adaptor is essential for early embryonic development in mammals, initial results suggested that it is dispensable for endocytosis in unicellular eukaryotes. The drastic effect of depleting AP-2 in metazoa and the mild effect of deleting AP-2 subunits in Saccharomyces cerevisiae have prevented a detailed analysis of the dynamics of endocytic patches in the absence of this adaptor. Using live-cell imaging of Schizosaccharomyces pombe endocytic sites we have shown that eliminating AP-2 perturbs the dynamics of endocytic patches beyond the moment of coat assembly. These perturbations affect the cell growth pattern and cell wall synthesis. Our results highlight the importance of using different model organisms to address the study of conserved aspects of CME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ayscough K, Hajibagheri NM, Watson R, Warren G (1993) Stacking of Golgi cisternae in Schizosaccharomyces pombe requires intact microtubules. J Cell Sci 106(Pt 4):1227–1237

    PubMed  Google Scholar 

  • Basu R, Chang F (2011) Characterization of dip1p reveals a switch in Arp2/3-dependent actin assembly for fission yeast endocytosis. Curr Biol 21:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazinet C, Katzen AL, Morgan M, Mahowald AP, Lemmon SK (1993) The Drosophila clathrin heavy chain gene: clathrin function is essential in a multicellular organism. Genetics 134:1119–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berro J, Sirotkin V, Pollard TD (2010) Mathematical modeling of endocytic actin patch kinetics in fission yeast: disassembly requires release of actin filament fragments. Mol Biol Cell 21:2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm M, Bonifacino JS (2001) Adaptins: the final recount. Mol Biol Cell 12:2907–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm M, Bonifacino JS (2002) Genetic analyses of adaptin function from yeast to mammals. Gene 286:175–186

    Article  CAS  PubMed  Google Scholar 

  • Boettner DR, Friesen H, Andrews B, Lemmon SK (2011) Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol Biol Cell 22:3699–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boettner DR, Chi RJ, Lemmon SK (2012) Lessons from yeast for clathrin-mediated endocytosis. Nat Cell Biol 14:2–10

    Article  CAS  Google Scholar 

  • Boucrot E, Saffarian S, Zhang R, Kirchhausen T (2010) Roles of AP-2 in clathrin-mediated endocytosis. PLoS One 5:e10597

    Article  PubMed  PubMed Central  Google Scholar 

  • Brach T, Godlee C, Moeller-Hansen I, Boeke D, Kaksonen M (2014) The initiation of clathrin-mediated endocytosis is mechanistically highly flexible. Curr Biol 24:548–554

    Article  CAS  PubMed  Google Scholar 

  • Carroll SY, Stirling PC, Stimpson HE, Giesselmann E, Schmitt MJ, Drubin DG (2009) A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev Cell 17:552–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll SY, Stimpson HE, Weinberg J, Toret CP, Sun Y, Drubin DG (2012) Analysis of yeast endocytic site formation and maturation through a regulatory transition point. Mol Biol Cell 23:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapa-y-Lazo B, Ayscough KR (2014) Apm4, the mu subunit of yeast AP-2 interacts with Pkc1, and mutation of the Pkc1 consensus phosphorylation site Thr176 inhibits AP-2 recruitment to endocytic sites. Commun Integr Biol 7:e28522

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapa-y-Lazo B, Allwood EG, Smaczynska-de R II, Snape ML, Ayscough KR (2014) Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses. Traffic 15:546–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocucci E, Aguet F, Boulant S, Kirchhausen T (2012) The first five seconds in the life of a clathrin-coated pit. Cell 150:495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Leon N, Sharifmoghadam MR, Hoya M, Curto MA, Doncel C, Valdivieso MH (2013) Regulation of cell wall synthesis by the clathrin light chain is essential for viability in Schizosaccharomyces pombe. PLoS One 8:e71510

    Article  PubMed  PubMed Central  Google Scholar 

  • de Leon N, Hoya M, Curto MA, Moro S, Yanguas F, Doncel C and Valdivieso MH (2016) The AP-2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast. Mol Microbiol 100:409–424

    Article  PubMed  Google Scholar 

  • Edeling MA, Smith C, Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7:32–44

    Article  CAS  PubMed  Google Scholar 

  • Gaidarov I, Santini F, Warren RA, Keen JH (1999) Spatial control of coated-pit dynamics in living cells. Nat Cell Biol 1:1–7

    Article  CAS  PubMed  Google Scholar 

  • Galletta BJ, Cooper JA (2009) Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 21:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galletta BJ, Mooren OL, Cooper JA (2010) Actin dynamics and endocytosis in yeast and mammals. Curr Opin Biotechnol 21:604–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goode BL, Eskin JA, Wendland B (2015) Actin and endocytosis in budding yeast. Genetics 199:315–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Grassart A, Cheng AT, Hong SH, Zhang F, Zenzer N, Feng Y, Briner DM, Davis GD, Malkov D, Drubin DG (2014) Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J Cell Biol 205:721–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirst J, Robinson MS (1998) Clathrin and adaptors. Biochim Biophys Acta 1404:173–193

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Cortesio CL, Drubin DG (2015) Machine-learning-based analysis in genome-edited cells reveals the efficiency of clathrin-mediated endocytosis. Cell Rep 12:2121–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhausen T (1999) Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 15:705–732

    Article  CAS  PubMed  Google Scholar 

  • Kita A, Sugiura R, Shoji H, He Y, Deng L, Lu Y, Sio SO, Takegawa K, Sakaue M, Shuntoh H, Kuno T (2004) Loss of Apm1, the micro1 subunit of the clathrin-associated adaptor-protein-1 complex, causes distinct phenotypes and synthetic lethality with calcineurin deletion in fission yeast. Mol Biol Cell 15:2920–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita A, Li C, Yu Y, Umeda N, Doi A, Yasuda M, Ishiwata S, Taga A, Horiuchi Y, Sugiura R (2011) Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast. PLoS One 6:e16842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon SK, Jones EW (1987) Clathrin requirement for normal growth of yeast. Science 238:504–509

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Takeuchi M, Sugiura R, Sio SO, Kuno T (2009) Deletion mutants of AP-1 adaptin subunits display distinct phenotypes in fission yeast. Genes Cells 14:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Macro L, Jaiswal JK, Simon SM (2012) Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium. J Cell Sci 125:5721–5732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    Article  CAS  PubMed  Google Scholar 

  • Merrifield CJ, Kaksonen M (2015) Endocytic accessory factors and regulation of clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 6:a016733

    Article  Google Scholar 

  • Munn AL, Silveira L, Elgort M, Payne GS (1991) Viability of clathrin heavy-chain-deficient Saccharomyces cerevisiae is compromised by mutations at numerous loci: implications for the suppression hypothesis. Mol Cell Biol 11:3868–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse BM (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73:1255–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse BM, Bretscher MS (1981) Membrane recycling by coated vesicles. Annu Rev Biochem 50:85–101

    Article  CAS  PubMed  Google Scholar 

  • Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D (1992) Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reider A, Wendland B (2011) Endocytic adaptors–social networking at the plasma membrane. J Cell Sci 124:1613–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhind N, Chen Z, Yassour M, Thompson DA, Haas et al (2011) Comparative functional genomics of the fission yeasts. Science 332:930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MS, Bonifacino JS (2001) Adaptor-related proteins. Curr Opin Cell Biol 13:444–453

    Article  CAS  PubMed  Google Scholar 

  • Roth MG (2006) Clathrin-mediated endocytosis before fluorescent proteins. Nat Rev Mol Cell Biol 7:63–68

    Article  CAS  PubMed  Google Scholar 

  • Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD (2010) Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol Biol Cell 21:2894–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toret CP, Drubin DG (2006) The budding yeast endocytic pathway. J Cell Sci 119:4585–4587

    Article  CAS  PubMed  Google Scholar 

  • Traub LM (2003) Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 163:203–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdivia RH, Baggott D, Chuang JS, Schekman RW (2002) The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev Cell 2:283–294

    Article  CAS  PubMed  Google Scholar 

  • Vigers GP, Crowther RA, Pearse BM (1986a) Three-dimensional structure of clathrin cages in ice. EMBO J 5:529–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigers GP, Crowther RA, Pearse BM (1986b) Location of the 100 kd-50 kd accessory proteins in clathrin coats. EMBO J 5:2079–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg J, Drubin DG (2012) Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 22:1–13

    Article  CAS  PubMed  Google Scholar 

  • Yeung BG, Phan HL, Payne GS (1999) Adaptor complex-independent clathrin function in yeast. Mol Biol Cell 10:3643–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank E. Keck for language revision. Financial support from the Ministerio de Economía y Competitividad (Spain)/European Union (Grant BFU2013-48582-C2-2-P) and Junta de Castilla y León (Grant SA073U14) made this work possible. NdL was supported by FPU fellowships from the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-Henar Valdivieso.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de León, N., Valdivieso, MH. The long life of an endocytic patch that misses AP-2. Curr Genet 62, 765–770 (2016). https://doi.org/10.1007/s00294-016-0605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0605-3

Keywords

Navigation