Skip to main content
Log in

Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Entamoeba histolytica contains a novel calcium-binding protein like calmodulin, which was discovered earlier, and we have reported the presence of its homologue(s) and a dependent protein kinase in plants. To understand the functions of these in plants, a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP) was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised. These plants showed variation in several phenotypic characters, of which two distinct features, more greenness and leaf thickness, were inherited in subsequent generations. The increase in the level of total chlorophyll in different plants ranged from 60% to 70%. There was no major change in chloroplast structure and in the protein level of D1, D2, LHCP and RuBP carboxylase. These morphological changes were not seen in antisense calmodulin transgenic tobacco plants, nor was the calmodulin level altered in EhCaBP antisense plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

CaM:

calmodulin

CBl:

calcineurin B-like proteins

CDPK:

calcium-dependent protein kinase

CIPK:

CBL interacting protein kinases

dZR:

dihydroxyzeatin riboside

EF:

elongation factor motif

EhCaBP:

Entamoeba histolytica calcium-binding protein

GUS:

beta-glucuronidase

IgG:

immunoglobulin G

iPA:

isopentenyl adenosine

LHCP:

light harvesting chlorophyll binding project

LSU:

large subunit

PCR:

polymerase chain reaction

PKS11:

protein kinase 11

PS:

photosystem

RuBP:

ribulose-1,5-bisphosphate carboxylase/oxygenase

SOS2:

salt overly sensitive 2

TLC:

thin layer chromatography

References

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K and Kudla J 2003 The calcium sensor CBL1 integrates plant responses to abiotic stresses; Plant J. 36 457–470

    Article  CAS  Google Scholar 

  • Arnon D I 1949 Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris; Plant Physiol. 24 1–15

    Article  CAS  Google Scholar 

  • Bajaj S and Rajam M V 1996 Polyamines accumulation and near loss of morphogenesis in long-term callus cultures of rice: restoration of plant regeneration by manipulation of cellular polyamine levels; Plant Physiol. 112 1343–1348

    Article  CAS  Google Scholar 

  • Batistic O and Kudla J 2004 Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network; Planta 219 915–924

    Article  CAS  Google Scholar 

  • Cheong Y H, Kim K N, Pandey G K, Gupta R, Grant J J and Luan S 2003 CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis; Plant Cell 15 1833–1845

    Article  CAS  Google Scholar 

  • Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim BG, Kudla J and Sheng Luan 2006 Two calcium sensors and their interacting kinase regulate transpiration and potassium uptake in Arabidopsis; Submitted to Plant J.

  • D’Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schultke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R and Kudla J 2006 Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis; Plant J. 48 857–872

    Article  Google Scholar 

  • Deswal R, Pandey G K, Chandok M R, Yadava N, Bhattacharya A and Sopory S K 2000 A novel protein kinase from Brassica juncea stimulated by a protozoan calcium binding protein: purification and partial characterization; Eur. J. Biochem. 267 3181–3188

    Article  CAS  Google Scholar 

  • Fridborg I, Kuusk S, Mortiz T and Sundberg E 1999 The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by over expression of a new putative zinc finger protein; Plant Cell 11 1019–32

    Article  CAS  Google Scholar 

  • Gong D, Gong Z, Guo Y, Chen X and Zhu J K 2002a Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase; J. Biol. Chem. 277 28340–28350

    Article  CAS  Google Scholar 

  • Gong D, Zhang C, Chen X, Gong Z and Zhu J K 2002b Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase; J Biol. Chem. 277 42088–42096

    Article  CAS  Google Scholar 

  • Guo Y, Qiu Q S, Quintero F J, Pardo J M, Ohta M, Zhang C, Schumaker K S and Zhu J K 2004 Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana; Plant Cell 16 435–449

    Article  CAS  Google Scholar 

  • Guo Y, Xiong L, Song C P, Gong D, Halfter U and Zhu J K 2002 A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis; Dev. Cell 3 233–244

    Article  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z and Maliga P 1994 The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids; Plant Mol. Biol. 25 989–994

    Article  CAS  Google Scholar 

  • Halfter U, Ishitani M and Zhu J-K 2000 The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3; Proc. Natl. Acad. Sci. USA 97 3747–3752

    Article  Google Scholar 

  • Hansen C E, Wenzler H and Frederick-Meins J R 1984 Concentration gradients of trans-zeatin riboside and trans-zeatin in the maize stems; Plant Physiol. 75 959–963

    Article  CAS  Google Scholar 

  • Harding S A, Oh S H and Roberts D M 1997 Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species; EMBO J. 16 1137–1144

    Article  CAS  Google Scholar 

  • Harmon A C, Gribskov M and Harper J F 2000 CDPKs: a kinase for every Ca2+ signal?; Trends Plant Sci. 5 154–159

    Article  CAS  Google Scholar 

  • Heo W D, Le S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park C H, Choi J Y and Cho M J 1999 Involvement of specific calmodulin isoforms in salicylic acid independent activation of plant disease resistance responses; Proc. Natl. Acad. Sci. USA 96 766–771

    Article  CAS  Google Scholar 

  • Horsch R B, Fry J E, Hoffmann N L, Eicholtz D, Rogers S G and Fraley R T 1985 A simple and general method for transferring genes into plants; Science 227 1229–1231

    Article  CAS  Google Scholar 

  • Hwang Y S, Bethke P C, Cheong Y H, Chang H S, Zhu T and Jones R L 2005 A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function; Plant Physiol. 138 1347–1358

    Article  CAS  Google Scholar 

  • Jefferson R A 1987 Assaying chimeric genes in plants: the GUS fusion system; Plant Mol. Biol. Rep. 5 387–405

    Article  CAS  Google Scholar 

  • Karnovsky M J 1967 The ultrastructural basis of capillary permeability studied with peroxidase as a tracer; J. Cell Biol. 35 213–236

    Article  CAS  Google Scholar 

  • Kim K N, Cheong Y H, Grant J J, Pandey G K and Luan S 2003 CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis; Plant Cell 15 411–423

    Article  CAS  Google Scholar 

  • Kim K N, Lee J S, Han H, Choi S A, Go S J and Yoon I S 2003 Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts; Plant Mol. Biol. 52 1191–1202

    Article  CAS  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O and Kudla J 2004 Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks; Plant Physiol. 134 43–58

    Article  CAS  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W and Luan S 1999 Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals; Proc. Natl. Acad. Sci. USA 96 4718–4723

    Article  CAS  Google Scholar 

  • Kusubas S, Kano-Murakami Y, Matsuoka M, Tamaoki M, Sakamoto T, Yamaguchi I and Fukumoto M 1998 Alteration of hormone levels in transgenic tobacco plants overexpressing the rice homeobox gene OSH1; Plant Physiol. 116 471–476

    Article  Google Scholar 

  • Li Y, Hagen G and Guilfoyle T J 1992 Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs; Dev. Biol. 153 386–439

    Article  CAS  Google Scholar 

  • Li L, Kim B G, Cheong Y H, Pandey G K and Sheng L 2006 A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis; Proc. Natl. Acad. Sci. USA 103 12625–12630

    Article  CAS  Google Scholar 

  • Liu J and Zhu J-K 1997 An Arabidopsis mutant that requires increased calcium from potassium nutrition and salt tolerance; Proc. Natl. Acad. Sci. USA 94 14960–14964

    Article  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S and Gruissem W 2002 Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants; Plant Cell 14 S389–S400

    Article  CAS  Google Scholar 

  • Mahajan S, Sopory S K and Tuteja N 2006 Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum); FEBS J. 273 907–925

    Article  CAS  Google Scholar 

  • Mayer K et al 1999 Sequence analysis of chromosome 4 of the plant Arabidopsis thaliana; Nature 402 769–777

    Article  CAS  Google Scholar 

  • McAnish M R and Hetherington A M 1998 Encoding specificity in calcium signaling systems; Trends Plant Sci. 3 32–36

    Article  Google Scholar 

  • Noodén L D 1988 The phenomenon of senescence and aging; in Senescence and aging in plants (eds) L D Noodén and A C Leopold (San Diego: Academic Press) pp 330–386

    Google Scholar 

  • Pandey G K 1999 Presence and role of homologues of EhCaBP (E. histolytica Calcium binding protein) in higher plants and characterization of a novel protein kinase from Brassica juncea, PhD thesis, Jawahar Lal Nehru University, New Delhi

    Google Scholar 

  • Pandey G K, Veena, Deswal R, Pandey S, Tewari S B, Tyagi W, Reddy V S, Bhattacharya A and Sopory S K 2001 Calcium signaling: downstream components in plants; in Signal transduction in plants: current advances (eds) S C Maheshwari, R Oelmuller and S K Sopory (New York: Kluwer Academic Publishers) pp 125–136

    Chapter  Google Scholar 

  • Pandey G K, Reddy V S, Reddy V S, Deswal R, Bhattacharya A and Sopory S K 2002 Transgenic tobacco expressing Entamoeba histolytica calcium binding protein exhibits enhanced growth and tolerance to salt stress; Plant Sci. 162 41–47

    Article  CAS  Google Scholar 

  • Pandey G K, Reddy M K, Sopory S K and Singla-Pareek S 2002 Calcium homeostasis in plants: role of calcium binding proteins in abiotic stress tolerance; Indian J. Biotechnol. 1 135–157

    CAS  Google Scholar 

  • Pandey G K, Veena, Deswal R, Reddy V S, Bhattacharya A and Sopory S K 2003 Development of stress tolerance by manipulating the expression of calcium binding proteins; in Biotechnology in sustainable biodiversity and food security (ed.) B N Prasad (Enfield (NH), USA: Science Publishers) pp 42–49

    Google Scholar 

  • Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, Hung W, D’Angelo C, Weinl S, Kudla J and Luan S 2004 The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis; Plant Cell 16 1912–1924

    Article  CAS  Google Scholar 

  • Pandey G K, Cheong Y H, Grant J J, Kim B-G, Li L and Sheng Luan 2006 CIPK9, a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis; Cell Res. (in press)

  • Pandey S, Tewari S B, Upadhyaya K C and Sopory S K 2000 Downstream component in Ca2+ signaling; Crit. Rev. Pl. Sci. 19 291–318

    Article  CAS  Google Scholar 

  • Pardo J M, Reddy M P, Yang S, Maggio A, Huh G-H, Matsumoto T, Coca M A, Paino-D’urzo M, Koiwa H, Yun D-J, Watad A A, Bressan R A and Hasegawa P M 1998 Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants; Proc. Natl. Acad. Sci. USA 95 9681–9686

    Article  CAS  Google Scholar 

  • Poovaiah B W, Takezawa D, An G and Han T J 1996 Regulated expression of a calmodulin isoform altered growth and development in potato; J. Plant Physiol. 149 533–558

    Article  Google Scholar 

  • Prasad J, Bhattacharya S and Bhattacharya A 1992 Cloning and sequence analysis of a calcium binding protein gene from a pathogenic strain of Entamoeba histolytica; Cell Mol. Biol. Res. 39 167–173

    Google Scholar 

  • Reddy A S N 2001 Calcium: silver bullet in signaling; Plant Sci. 160 381–404

    Article  CAS  Google Scholar 

  • Rudd J J and Franklin-Tong V E 2001 Unravelling response-specificity in Ca2+ signalling pathways in plant cells; New Phytol. 151 7–33

    Article  CAS  Google Scholar 

  • Sanders D, Brownlee C and Harper J F 1999 Communicating with calcium; Plant Cell 11 691–706

    Article  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C and Harper J F 2002 Calcium at the crossroads of signaling; Plant Cell 14 S401–S417

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989 Molecular cloning, a laboratory manual (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory) 2nd edition

    Google Scholar 

  • Sopory S K and Munshi M 1998 Protein kinases and phosphatases and their role in cellular signaling in plants; Crit. Rev. Plant Sci. 17 245–318

    Article  CAS  Google Scholar 

  • Thimann K V 1985 The interaction of hormonal and environmental factors in leaf senescence. Biol. Plant 2 83–91

    Article  Google Scholar 

  • Trewavas A J and Malho R 1997 Signal perception and transduction: the origin of the phenotype; Plant Cell 9 1181–1195

    Article  CAS  Google Scholar 

  • Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L and Wu W H 2006 A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis; Cell 125 1347–1360

    Article  CAS  Google Scholar 

  • Yadava N, Chandok M R, Prasad J, Bhattacharya S, Sopory S K and Bhattacharya A 1997 Characterization of EhCaBP a calcium-binding protein Entamoeba histolytica and its binding proteins; Mol. Biochem. Parasitol. 84 69–82

    Article  CAS  Google Scholar 

  • Zhu J K 2002 Salt and drought stress signal transduction in plants; Annu. Rev. Plant Biol. 53 247–273

    Article  CAS  Google Scholar 

  • Zielinski R E, Ling V and Perera I 1990 Plant protein phosphorylation, protein kinases, calcium and calmodulin; in Current topics in plant biochemistry and physiology 9 (Columbia, MO: Interdisc. Plant Biochem. Physiol. Prog. Univ., Missouri) pp 141–152

    Google Scholar 

  • Zielinski R E 1998 Calmodulin and calmodulin-binding proteins in plants; Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 697–725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girdhar K Pandey.

Additional information

The results of this paper have been granted US Patent No. 6,791,009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, G.K., Pandey, A., Reddy, V.S. et al. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll. J Biosci 32, 251–260 (2007). https://doi.org/10.1007/s12038-007-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0025-0

Keywords

Navigation