Skip to main content
Log in

Structural analysis of open cluster Bochum 2

  • STAR FORMATION
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

We present the results from our deep optical photometric observations of Bochum 2 (Boc2) star cluster obtained using the 1.3-m Devasthal Fast Optical Telescope along with archival photometric data from Pan-STARRS2/2MASS/UKIDSS surveys. We also used high-quality parallax and proper motion data from the Gaia Data Release 3. We found that the Boc2 cluster has a small size (\(\sim \)1.1 pc) and circular morphology. Using Gaia parallax of member stars and isochrone fitting method, the distance of this cluster is estimated as \(3.8\pm 0.4\) kpc. We have found that this cluster holds young (\({\sim }5\) Myr) and massive (O7–O9) stars as well as an older population of low mass stars. We found that the massive stars were formed in the inner region of the Boc2 cluster in a recent epoch of star formation. We have derived mass function slope (\(\Gamma \)) in the cluster region as \(-2.42\pm 0.13\) in the mass range of \({\sim }0.72<M/M_{\odot }<2.8\). The tidal radius of the Boc2 cluster (\(\sim \)7–9) is much more than its observed radius (\({\sim }1.1\) pc). This suggests that most of the low-mass stars in this cluster are the remains of an older population of stars formed via an earlier epoch of star formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. IRAF is distributed by National Optical Astronomy Observatories, USA.

  2. ESO-MIDAS is developed and maintained by the European Southern Observatory.

  3. https://irsa.ipac.caltech.edu/Missions.

  4. https://skyview.gsfc.nasa.gov/current/cgi/query.pl.

  5. http://wsa.roe.ac.uk.

  6. https://catalogs.mast.stsci.edu/.

  7. https://gea.esac.esa.int/archive/.

  8. https://gea.esac.esa.int/archive/.

References

  • Allison R. J., Goodwin S. P., Parker R. J. et al. 2009, MNRAS, 395, 1449

    Article  ADS  Google Scholar 

  • Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Demleitner M., Andrae R. 2021, AJ, 161, 147

  • Balaguer-Núnez L., Tian K. P., Zhao J. L. 1998, A &AS, 133, 387

    ADS  Google Scholar 

  • Binney J., Tremaine S. 1987, Galactic dynamics

  • Bisht D., Yadav R. K. S., Durgapal A. K. 2017, New A, 52, 55

    Article  ADS  Google Scholar 

  • Bovy J. 2017, MNRAS, 468, L63

    Article  ADS  Google Scholar 

  • Camargo D., Bonatto C., Bica E. 2015, MNRAS, 450, 4150

    Article  ADS  Google Scholar 

  • Chabrier G. 2003, PASP, 115, 763

    Article  ADS  Google Scholar 

  • Chambers K. C., Magnier E. A., Metcalfe N. et al. 2016, arXiv e-prints, 1612.05560

  • Chauhan N., Pandey A. K., Ogura K. et al. 2011, MNRAS, 415, 1202

    Article  ADS  Google Scholar 

  • Cutri R. M., Skrutskie M. F., van Dyk S. et al. 2003, VizieR Online Data Catalog, II/246

  • Dalessandro E., Ferraro F. R., Massari D. et al. 2015, ApJ, 810, 40

    Article  ADS  Google Scholar 

  • Dib S., Schmeja S., Parker R. J. 2018, MNRAS, 473, 849

  • Gaia Collaboration, Prusti T., de Bruijne J. H. J. et al. 2016, A &A, 595, A1

  • Gaia Collaboration, Katz D., Antoja T. et al. 2018a, A &A, 616, A11

  • Gaia Collaboration, Brown A. G. A., Vallenari A. et al. 2018b, A &A, 616, A1

  • Gieles M., Baumgardt H. 2008, MNRAS, 389, L28

    Article  ADS  Google Scholar 

  • Gieles M., Portegies Zwart S. F., Baumgardt H. et al. 2006, MNRAS, 371, 793

  • Girard T. M., Grundy W. M., Lopez C. E., van Altena W. F. 1989, AJ, 98, 227

  • Gutermuth R. A., Megeath S. T., Myers P. C. et al. 2009, ApJS, 184, 18

    Article  ADS  Google Scholar 

  • Gutermuth R. A., Megeath S. T., Pipher J. L. et al. 2005, ApJ, 632, 397

    Article  ADS  Google Scholar 

  • Jose J., Herczeg G. J., Samal M. R., Fang Q., Panwar N. 2017, ApJ, 836, 98

    Article  ADS  Google Scholar 

  • Jose J., Pandey A. K., Ojha D. K. et al. 2008, MNRAS, 384, 1675

    Article  ADS  Google Scholar 

  • Jose J., Pandey A. K., Samal M. R. et al. 2013, MNRAS, 432, 3445

    Article  ADS  Google Scholar 

  • Kaur H., Sharma S., Dewangan L. K. et al. 2020, ApJ, 896, 29

  • Kharchenko N. V., Piskunov A. E., Schilbach E., Röser S., Scholz R. D. 2016, A &A, 585, A101

    Google Scholar 

  • Kroupa P., Boily C. M. 2002, MNRAS, 336, 1188

    Article  ADS  Google Scholar 

  • Lada C. J., Muench A. A., Luhman K. L. et al. 2006, AJ, 131, 1574

  • Landolt A. U. 1992, AJ, 104, 340

  • Lawrence A., Warren S. J., Almaini O. et al. 2007, MNRAS, 379, 1599

    Article  ADS  Google Scholar 

  • Luhman K. L., Esplin T. L., Loutrel N. P. 2016, ApJ, 827, 52

  • Moffat A. F. J., Fitzgerald M. P., Jackson P. D. 1979, A &AS, 38, 197

    ADS  Google Scholar 

  • Moffat A. F. J., Vogt N. 1975, A &AS, 20, 85

    ADS  Google Scholar 

  • Munari U., Carraro G. 1995, MNRAS, 277, 1269

    Article  ADS  Google Scholar 

  • Olczak C., Spurzem R., Henning T. 2011, A &A, 532, A119

  • Pandey A. K., Sharma S., Ogura K. et al. 2008, MNRAS, 383, 1241

    Article  ADS  Google Scholar 

  • Pandey A. K., Upadhyay K., Ogura K. et al. 2005, MNRAS, 358, 1290

  • Pandey A. K., Eswaraiah C., Sharma S. et al. 2013, ApJ, 764, 172

    Article  ADS  Google Scholar 

  • Pandey R., Sharma S., Panwar N. et al. 2020, ApJ, 891, 8

    Article  Google Scholar 

  • Pandey R., Sharma S., Dewangan L. K. et al. 2022, ApJ, 926, 25

    Article  ADS  Google Scholar 

  • Pastorelli G., Marigo P., Girardi L. et al. 2019, MNRAS, 485, 5666

    Article  ADS  Google Scholar 

  • Pecaut M. J., Mamajek E. E. 2013, ApJS, 208, 9

    Article  ADS  Google Scholar 

  • Pflamm-Altenburg J., Kroupa P. 2009, MNRAS, 397, 488

  • Phelps R. L., Janes K. A. 1994, ApJS, 90, 31

    Article  ADS  Google Scholar 

  • Pinfield D. J., Jameson R. F., Hodgkin S. T. 1998, MNRAS, 299, 955

    Article  ADS  Google Scholar 

  • Roeser S., Demleitner M., Schilbach E. 2010, AJ, 139, 2440

  • Russeil D., Adami C., Georgelin Y. M. 2007, A &A, 470, 161

  • Salpeter E. E. 1955, ApJ, 121, 161

  • Sharma S., Pandey A. K., Ogura K. et al. 2006, AJ, 132, 1669

  • Sharma S., Pandey A. K., Ogura K. et al. 2008, AJ, 135, 1934

  • Sharma S., Pandey A. K., Ojha D. K. et al. 2007, MNRAS, 380, 1141

    Article  ADS  Google Scholar 

  • Sharma S., Pandey A. K., Ojha D. K. et al. 2017, MNRAS, 467, 2943

    Article  ADS  Google Scholar 

  • Sharma S., Pandey A. K., Pandey J. C. et al. 2012, PASJ, 64, 107

    Article  ADS  Google Scholar 

  • Sharma S., Ghosh A., Ojha D. K. et al. 2020, MNRAS, 498, 2309

    Article  ADS  Google Scholar 

  • Skrutskie M. F., Cutri R. M., Stiening R. et al. 2006, AJ, 131, 1163

  • Stetson P. B. 1987, PASP, 99, 191

    Article  ADS  Google Scholar 

  • Stetson P. B. 1992, in Astronomical Society of the Pacific Conference Series, Vol. 25, Astronomical Data Analysis Software and Systems I, eds Worrall D. M., Biemesderfer C., Barnes J., p. 297

  • Turbide L., Moffat A. F. J. 1993, AJ, 105, 1831

  • Yadav R. K. S., Sariya D. P., Sagar R. 2013, MNRAS, 430, 3350

    Article  ADS  Google Scholar 

  • Yeh F.-C., Carraro G., Korchagin V. I., Pianta C., Ortolani S. 2020, A &A, 635, A125

    Google Scholar 

Download references

Acknowledgements

The observations reported in this paper were obtained using the 1.3m Devesthal Fast Optical Telescope, Nainital, India. This work is based on data obtained as part of the UKIRT Infrared Deep Sky Survey (UKIDSS). This publication made use of data products from 2MASS (a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and NSF) and archival data obtained with the Spitzer Space Telescope (operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA). This study has made use of data from the European Space Agency (ESA) mission Gaia (https://cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by the institutions participating in the Gaia Multilateral Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmeen Kaur.

Additional information

This article is part of the Special Issue on “Star formation studies in the context of NIR instruments on 3.6 m DOT”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Sharma, S., Durgapal, A. et al. Structural analysis of open cluster Bochum 2. J Astrophys Astron 44, 66 (2023). https://doi.org/10.1007/s12036-023-09953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09953-9

Keywords

Navigation