Skip to main content
Log in

Study of solar neighborhood open cluster NGC 6475 and 11 possible members B-type stars

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

In the present paper, we performed the optical, astrometric and spectroscopic studies for the open star cluster NGC 6475 using Gaia DR3 data. Using the radial density profile, we estimated the radius of the cluster to be equal to 1.44°. It is located at a distance of 279 ± 17 pc and has a service life of 224 ± 26 Myr. The mean proper motions in RA are 268.50 ± 0.80 mas yr−1 and in DEC, they are −34.83 ± 0.70 mas yr−1. Using spectroscopic radial velocity data of Gaia DR3, the median radial velocity is −14.47 ± 1.92 km s−1. We determined the physical parameters (Teff, log g and V sin i) for 11 possible members of the B-type stars in the open cluster NGC 6475, using the Barbier–Chalonge–Divan (BCD) spectrophotometry system. We also determined the projected rotational velocity of the stars by matching them with the theoretical LTE model and located our studied stars over the HR diagram. From the 11 studied B-type stars, we found six members from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abt H. A. 1975, PASP 87, 417A

    Article  ADS  Google Scholar 

  • Abt H. A., Jewsbury C. P. 1969, ApJ 156, 983A

    Article  ADS  Google Scholar 

  • Bagnulo S., Jehin E., Ledoux C., et al. 2003 (The ESO Paranal Science Operations Team) Messenger, 114, 10

  • Barbier D., Chalonge D. 1941, Ann. Astrophys. 4, 30

    ADS  Google Scholar 

  • Buscombe W., Kennedy P. M. 1968, MNRAS 139, 215B

    Article  ADS  Google Scholar 

  • Cantat-Gaudin T., Anders F., Castro-Ginard A. 2020, A&A 640A, 1C

    Google Scholar 

  • Cardelli Jason A., Clayton Geoffrey C., Mathis John S. 1989, ApJ 345, 245C

    Article  ADS  Google Scholar 

  • Carrasco J. M., Weiler M., Jordi C. et al. 2021, A&A 652, A86

    Article  Google Scholar 

  • Catalano F. A., Renson P. 1998, A&AS 127, 421C

    Article  ADS  Google Scholar 

  • Chalonge D., Divan L. 1952, AnAp 15, 201C

    ADS  Google Scholar 

  • Chalonge D., Divan L. 1973a, A&A 23, 19C

    Google Scholar 

  • Chalonge D., Divan L. 1973b, A&A 23, 69C

    ADS  Google Scholar 

  • Chalonge D., Divan L. 1977, A&A 55, 117C

    ADS  Google Scholar 

  • Conrad C., Scholz R.-D., Kharchenko N. V., Piskunov A. E., Röser S. 2017, A&A 600A, 106C

    Article  Google Scholar 

  • Daszyńska-Daszkiewicz J., Miszuda A. 2019, ApJ 886, 35D

    Article  ADS  Google Scholar 

  • Ducati J. R., Penteado E. M., Turcati R. 2011, A&A 525A, 26

    Article  ADS  Google Scholar 

  • El-Depsey M. H., Shokry A., Hendy Y. H. M., Abdelbar A. M., Beheary M. M. 2023, NewA 10001988E

  • Folsom C. P., Wade G. A., Bagnulo S., Landstreet J. D. 2007, MNRAS 376, 361F

    Article  ADS  Google Scholar 

  • Folsom C. P., Wade G. A., Bagnulo S., Landstreet J. D. 2006, ASPC 358, 389F

    ADS  Google Scholar 

  • Fossati L., Bagnulo S., Monier R. et al. 2007, A&A 476, 911

    Article  ADS  Google Scholar 

  • Gaia Collaboration, Antoja T., McMillan P. J., et al. 2021a, A&A 649, A8

  • Gaia Collaboration, Brown A. G. A.,Vallenari A., et al., 2021b, A&A 649A, 1G

  • Gaia Collaboration, Prusti T., de Bruijne J. H. J., et al., 2016, A&A 595A, 1G

  • Gaia Collaboration, Vallenari A., Brown A. G. A., et al., 2022, arXiv:2208.00211

  • Girardi L., Bressan A., Bertelli G., Chiosi C. 2000, A&AS 141, 371G

    Article  ADS  Google Scholar 

  • Glagolevskij Yu. V. 1994, BSAO 38, 152G

    ADS  Google Scholar 

  • Gray D. F. 2015, The Observation and Analysis of Stellar Photospheres, Cambridge University Press

    Google Scholar 

  • Hamdy M. A., Abo Elzam M. S., Saad S. M. 1993, Ap&SS 203, 53H

    Article  ADS  Google Scholar 

  • Hempel M., Holweger H. 2003, IAUS 210P.E37H

  • Hendy Y. H. M., Bisht D. 2021, RMxAA 57, 381H

    Article  ADS  Google Scholar 

  • Hendy Y. H. M., Tadross A. L., 2021, AN 342, 613

  • H\({\o}\)g E. 1961, AN 286, 65H

  • Houk N. 1982

  • James David J. 2013, PASP 125, 1087J

    Article  ADS  Google Scholar 

  • Jehin E., Bagnulo S., Melo C., Ledoux C., Cabanac R. 2005, IAUS 228, 261J

    Article  ADS  Google Scholar 

  • Kharchenko N. V., Piskunov A. E., Röser S., Schilbach E., Scholz R.-D. 2005, A&A 438, 1163

    Article  ADS  Google Scholar 

  • King Ivan R. 1966, AJ 71, 64K

  • Koelbloed D. 1959, BAN 14, 265K

  • Kunder A., Kordopatis G., Steinmetz M., et al. 2017, AJ 153

  • Kurucz R., 1969, Tons. Conf. 375K

  • Lindegren L., Bastian U., Biermann M., et al. 2021a, A&A 649, 31

    Article  Google Scholar 

  • Lindegren L., Hernández J., Bombrun A., et al. 2018, A&A 616 A, 2L

  • Lindegren L., Klioner S. A., Hernández J., et al. 2021b, A&A 649, 35

  • Littlefair S. P., Naylor T., Jeffries R. D., Devey C. R., Vine S. 2003, MNRAS 345, 1205L

    Article  ADS  Google Scholar 

  • Liu L., Pang X. 2019, ApJSS 245

  • Marigo P., Girardi L., Bressan A., et al. 2017, ApJ 835, 77

    Article  ADS  Google Scholar 

  • Maurya J., Joshi Y. C. 2020, MNRAS 494, 4713M

    Article  ADS  Google Scholar 

  • Merezhin U. P. 1994, Ap&SS 215, 83M

    Article  ADS  Google Scholar 

  • Meynet G., Mermilliod J.-C., Maeder A. 1993, A&AS 98, 477

    ADS  Google Scholar 

  • Morossi C., Malagnini M. L. 1985, A&AS 60, 365M

    ADS  Google Scholar 

  • Peterson C. J., King I. R. 1975, AJ 80, 427P

  • Pourbaix D., Tokovinin A. A., Batten A. H., et al. 2004, A&A 424, 727P

    Article  ADS  Google Scholar 

  • Prosser C. F., Randich S., Stauffer J. R. 1996, AJ 112, 649

  • Riello M., De Angeli F., Evans D. W., et al. 2021, A&A 649, A3

    Article  Google Scholar 

  • Robichon N., Arenou F., Mermilliod J.-C., Turon C. 1999, A&A 345, 471

    ADS  Google Scholar 

  • Sartoretti P., Blomme R., David M., Seabroke G. 2022, Gaia DR3 documentation Chapter 6: Spectroscopy, Gaia DR3 documentation

  • Sestito P., Randich S., Mermilliod J.-C., Pallavicini R. 2003, A&A 407, 289

    Article  ADS  Google Scholar 

  • Shokry A., Rivinius Th., Mehner A., et al. 2018, A&A 609A, 108S

    Article  Google Scholar 

  • Shokry A., Nouh M. I., Saad S. M., Helmy I. 2022, NewA 930, 1780S

    Google Scholar 

  • Silaj J., Landstreet J. D. 2014, A&A 566A, 132S

    Article  ADS  Google Scholar 

  • Smoker J. V., Bagnulo S., Cabanac R., et al. 2011, MNRAS 414, 59S

    Article  ADS  Google Scholar 

  • Snowden M. S. 1976, PASP 88, 1745

  • Tadross A. L., Hendy Y. H. 2021, JAPA 42, 6T

    ADS  Google Scholar 

  • Tadross A. L., Hendy Y. H. 2022, AdSpR 69, 467T

    ADS  Google Scholar 

  • Tadross A. L., Hendy Y. H. 2016, JKAS 49, 53

    ADS  Google Scholar 

  • Tokovinin A. A. 1997, A&AS 121, 71T

    Article  ADS  Google Scholar 

  • Townsend R. H. D., Owocki S. P., Howarth I. D. 2004, MNRAS 350, 189T

    Article  ADS  Google Scholar 

  • Villanova S., Carraro G., Saviane I. 2009, A&A 504, 845V

    Article  ADS  Google Scholar 

  • Wenger C H., Boudon V., Champion J. P., Pierre G. 2000, JQSRT 66, 1W

  • Wright C. O., Egan M. P., Kraemer K. E., Price S. D. 2003, AJ 125, 359W

  • Yen S. X., Reffert S., Röser S., et al. 2018, IAUS 330, 281Y

    ADS  Google Scholar 

  • Zorec J., Royer F. 2012, A&A 537A, 120Z

    Article  ADS  Google Scholar 

Download references

Acknowledgment

We would like to express our deep thanks to the anonymous referee, since his/her fruitful criticism of the version of this paper greatly helped us to improve the paper and the arguments, and we also gratefully appreciate his work, efforts and patience. This work has used data from the European Space Agency (ESA) mission Gaia processed by (https://www.cosmos.esa.int/web/gaia/data), i.e., the Gaia Data Processing & Analysis Consortium (DPAC). Funding for the DPAC has been provided by national institutions; in particular, the institutions participating in the Gaia Multilateral Agreement. This study was made by using the UVES Paranal Observatory Project (POP). We would like to thank Dr M. Nouh, for his fruitful discussions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. El-Depsey.

Appendix: Notes on the individual objects

Appendix: Notes on the individual objects

In the following, we discussed about the previous results for studied B stars:

HD 162306 is a double-lined binary star; the star was classified as B8IV by Smoker et al. (2011), who reported a star as a non-member of the NGC 6475, which has been agreed with our investigation.

HD 162515 is the spectroscopic binary star (Ducati et al. 2011) and Morossi & Malagnini (1985) classified the star as B9 (III), whereas Silaj & Landstreet (2014) determined Teff of the system by 10,370 K by using the Geneva photometry system, our result of Teff \(=\) 10,075 is in a good agreement within error with their results, we investigated the star as a member in the NGC 6475 cluster.

HD 162576 is a double star, the star was classified as A0 by Abt (1975), while Catalano & Renson (1998) classified the star as B9, Silaj & Landstreet (2014) determined Teff of the system by 10,100 K by using the Geneva photometry system, Abt & Jewsbury (1969) determined Vrot < 40 km s−1, while Zorec & Royer (2012) determined V sin i as 17 km s−1, Folsom et al. (2007) determined Teff \(=\) 10,640 ± 270 and log g \(=\) 3.7 ± 0.1 and V sin i \(=\) 28 ± 3 km s−1, our determined value of Teff \(=\) 10,561 ± 18, log g \(=\,\)3.6 and V sin i \(=\) 30 km s−1 in a good agreement within error with that of Folsom et al. (2007). We investigated the star as a member in the NGC 6475 cluster.

HD162586 is a double star, Silaj & Landstreet (2014) determined Teff of the system by 12,707 K by using the Geneva photometry system, our result of Teff \(=\) 11,626 ± 8 in deference from their results of almost 1000 K, where this difference is due to the different method used in both the studies.

HD162631 is a single star, which is classified as A0III by Houk (1982).

HD162679 is a spectroscopic binary star (Pourbaix et al. 2004), Morossi & Malagnini (1985) classified the star as B9(V), Villanova et al. (2009) also classified the star as B9 (V) and determined Teff \(=\) 9962, log g \(=\) 3.49 and V sin i \(=\) 37 km s−1, while Silaj & Landstreet (2014) determined Teff of the system by 10,638 K. Our obtained Teff \(=\) 9698 ± 42, log g \(=\) 4.3 and V sin i \(=\) 30 km s−1 are in a very good agreement with that of Villanova et al. (2009). We investigated the star as a member in the NGC 6475 cluster.

HD162724 is an eclipsing binary star (Tokovinin 1997), the star was classified as B9 V by Mon (1968) and Silaj & Landstreet (2014) determined Teff of the system by 10,600 K by using the Geneva photometry system, our calculated Teff \(=\) 10,362 ± 56 is in a good agreement with their result.

HD162725 is an alpha2 CVn variable star (Silaj & Landstreet 2014), the star was classified as A0 p by Abt (1975), Glagolevskij (1994) determined Teff as 9800 and Folsom et al. 2007 determined the Teff \(=\) 9820 ± 400 and log g \(=\) 3.5 ± 0.2, while Silaj & Landstreet (2014) determined Teff of the system by 9600 K, our calculated Teff \(=\) 9777 ± 27 is within the range of their results. We investigated the star as a member in the NGC 6475 cluster.

HD162780 is a spectroscopic binary star (Pourbaix et al. 2004), the star was classified as A0 (IV) by Buscombe & Kennedy (1968) and Merezhin (1994) studied star as the spectroscopic binary system and determined Teff of the primary component as 10,300 and V sin i for the system as 295 km s−1, Silaj & Landstreet (2014) determined Teff of the system by 9902 K by using the Geneva photometry system, our calculated Teff \(=\) 9994 ± 25 is within the range of their results.

HD162781 is a normal single star, which was classified as A0IV by Buscombe & Kennedy (1968), Silaj & Landstreet (2014) determined Teff of the system by 9221 K by using the Geneva photometry system, our result of Teff \(=\) 1062 ± 95 in deference with their results almost 1000 K, where this difference is due to the different method used in both the studies, where our result could be more accurate due to depending on the modeling of the spectrum of star.

HD162817 is a normal B star with any appearance of peculiarities, the star was classified as B9.5/A0III by Buscombe & Kennedy (1968), while Hamdy et al. (1993) classified the star as B9.5, Hempel & Holweger (2003) determined Teff \(=\) 9190 and log g \(=\) 3.15 dex and V sin i \(=\) 76 ± 4 km s−1, Folsom et al. (2007) determined Teff \(=\) 9940 ± 360 and log g \(=\) 3.4 ± 0.1 and V sin i \(=\) 79 ± 3 km s−1, while Silaj & Landstreet (2014) determined Teff of the system by 9500 K by using the Geneva photometry system, our result of Teff \(=\) 9451 ± 21 is within the range of their results. We investigated the star as a member of the NGC 6475 cluster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Depsey, M.H., Hendy, Y.H.M., Shokry, A. et al. Study of solar neighborhood open cluster NGC 6475 and 11 possible members B-type stars. J Astrophys Astron 44, 65 (2023). https://doi.org/10.1007/s12036-023-09958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09958-4

Keywords

Navigation