Skip to main content
Log in

Nanohertz gravitational wave astronomy during SKA era: An InPTA perspective

  • Scientific Review
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Decades long monitoring of millisecond pulsars, which exhibit highly stable rotational periods in pulsar timing array experiments is on the threshold of discovering nanohertz stochastic gravitational wave background. This paper describes the Indian pulsar timing array (InPTA) experiment, which employs the upgraded Giant Metrewave Radio Telescope (uGMRT) for timing an ensemble of millisecond pulsars for this purpose. We highlight InPTA’s observation strategies and analysis methods, which are relevant for a future PTA experiment with the more sensitive Square Kilometer Array (SKA) telescope. We show that the unique multi-sub-array multi-band wide-bandwidth frequency coverage of the InPTA, provides dispersion measure estimates with unprecedented precision for PTA pulsars, e.g., \(\sim 2 \times 10^{-5}\) pc cm\(^{-3}\) for PSR J1909-3744. Configuring the SKA-low and SKA-mid as two and four sub-arrays, respectively, it is shown that comparable precision is achievable, using observation strategies similar to those pursued by the InPTA, for a larger sample of 62 pulsars, requiring about 26 and 7 h per epoch for the SKA-mid and the SKA-low telescopes, respectively. We also review the ongoing efforts to develop PTA-relevant general relativistic constructs that will be required to search for nanohertz gravitational waves from isolated super-massive black hole binary systems like blazar OJ 287. These efforts should be relevant to pursue persistent multi-messenger gravitational wave astronomy during the forthcoming era of the SKA telescope, the thirty meter telescope, and the next-generation event horizon telescope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://www.ligo.org/science/Publication-O3aCatalog/index.php.

  2. http://ipta4gw.org/.

  3. It may be noted that large European array for pulsars (LEAP, Bassa et al. 2016) also uses a phased array of multi-element telescopes, but these form a subset of European pulsar timing array experiment, which is largely based on single dish observations. Another interferometer, which contributes data to European pulsar timing array experiment is the Westerbok synthesis radio telescope. Recently, the MeerTime experiment (Bailes et al. 2016a) has started collecting data with MeerKat, which is also an interferometer. It may be noted that these telescopes have not been used as sub-arrays unlike the uGMRT.

  4. Dispersion measure is defined as the integral of the column density of electrons over the line-of-sight to the pulsar.

  5. https://www.cv.nrao.edu/~sransom/presto/.

  6. http://sigproc.sourceforge.net/.

  7. http://psrchive.sourceforge.net/.

  8. http://dspsr.sourceforge.net/.

  9. https://github.com/abhisrkckl/pinta.

  10. https://github.com/ymaan4/RFIClean.

  11. https://github.com/chowdhuryaditya/gptool.

  12. https://github.com/kkma89/dmcalc.git.

  13. https://www.atnf.csiro.au/research/pulsar/psrcat/.

  14. https://github.com/pennucci/PulsePortraiture.

References

  • Abbott B. P., Abbott R., Abbott T. D. et al. 2017a, Nature, 551, 85

    Article  ADS  Google Scholar 

  • Abbott B. P., Abbott R., Abbott T. D. et al. 2017b, Physical Review Letters, 119, 161101

    Article  ADS  Google Scholar 

  • Abbott B. P., Abbott R., Abbott T. D. et al. 2017c, The Astrophysical Journal Letter, 848, L12

    Article  ADS  Google Scholar 

  • Abbott B. P., Abbott R., Abbott T. D. et al. 2019, Physical Review X, 9, 031040

  • Abbott R., Abbott T. D., Abraham S. et al. 2020, arXiv e-prints, 2010.14527

  • Abbott R., Abbott T. D., Abraham S. et al. 2021a, Physical Review X, 11, 021053

    Article  ADS  Google Scholar 

  • Abbott R., Abbott T. D., Acernese F. et al. 2021b, arXiv e-prints, 2111.03606

  • Alam M. F., Arzoumanian Z., Baker P. T. et al. 2021, The Astrophysical Journal Supplement, 252, 5

    Article  ADS  Google Scholar 

  • Anholm M., Ballmer S., Creighton J. D. E., Price L. R., Siemens X. 2009, Physical Review D, 79, 084030

    Article  ADS  Google Scholar 

  • Antoniadis J., Arzoumanian Z., Babak S. et al. 2022, Monthly Notices of the Royal Astronomical Society, 510, 4873

    Article  ADS  Google Scholar 

  • Arimoto M., Asada H., Cherry M. L. et al. 2021, arXiv e-prints, 2104.02445

  • Arzoumanian Z., Baker P. T., Brazier A. et al. 2018, The Astrophysical Journal, 859, 47

    Article  ADS  Google Scholar 

  • Arzoumanian Z., Baker P. T., Blumer H. et al. 2020, The Astrophysical Journal Letters, 905, L34

    Article  ADS  Google Scholar 

  • Arzoumanian Z., Baker P. T., Brazier A. et al. 2021, The Astrophysical Journal, 914, 121

    Article  ADS  Google Scholar 

  • Bailes M., Barr E., Bhat N. D. et al. 2016a, in Proceedings of Science (Trieste, Italy: Sissa Medialab), 011

  • Bailes M., Barr E., Bhat N. D. R. et al. 2016b, in MeerKAT Science: On the Pathway to the SKA, 11

  • Bailes M., Berger B. K., Brady P. R. et al. 2021, Nature Reviews Physics, 3, 344

    Article  ADS  Google Scholar 

  • Banik S., Bandyopadhyay D. 2017, arXiv e-prints, arXiv:1712.09760

  • Bassa C. G., Janssen G. H., Karuppusamy R. et al. 2016, Monthly Notices of the Royal Astronomical Society, 456, 2196

    Article  ADS  Google Scholar 

  • Blanchet L. 2014, Living Reviews in Relativity, 17, 2

    Article  ADS  Google Scholar 

  • Boran S., Desai S., Kahya E. O., Woodard R. P. 2018, Physical Review D, 97, 041501

    Article  ADS  Google Scholar 

  • Burke-Spolaor S., Taylor S. R., Charisi M. et al. 2019, Astronomy & Astrophysics Reviews, 27, 5

    Article  ADS  Google Scholar 

  • Chen S., Caballero R. N., Guo Y. J. et al. 2021, Monthly Notices of the Royal Astronomical Society, 508, 4970

    Article  ADS  Google Scholar 

  • Cho G., Gopakumar A., Haney M., Lee H. M. 2018, Physical Review D, 98, 024039

    Article  ADS  MathSciNet  Google Scholar 

  • Cohen M. 2017, Galaxies, 5, 12

    Article  ADS  Google Scholar 

  • Damour T., Deruelle N. 1986, Ann. Inst. Henri Poincaré Phys. Théor, 44, 263

    Google Scholar 

  • Damour T., Gopakumar A., Iyer B. R. 2004, Physical Review D, 70, 064028

    Article  ADS  MathSciNet  Google Scholar 

  • De K., Gupta Y. 2016, Experimental Astronomy, 41, 67

    Article  ADS  Google Scholar 

  • Desvignes G., Caballero R. N., Lentati L. et al. 2016a, Monthly Notices of the Royal Astronomical Society, 458, 3341

    Article  ADS  Google Scholar 

  • Desvignes G., Caballero R. N., Lentati L. et al. 2016b, Monthly Notices of the Royal Astronomical Society, 458, 3341

    Article  ADS  Google Scholar 

  • Detweiler S. 1979, The Astrophysical Journal, 234, 1100

    Article  ADS  Google Scholar 

  • Dey L., Valtonen M. J., Gopakumar A. et al. 2018, The Astrophysical Journal, 866, 11

    Article  ADS  Google Scholar 

  • Dey L., Gopakumar A., Valtonen M. et al. 2019, Universe, 5, 108

    Article  ADS  Google Scholar 

  • Dey L., Valtonen M. J., Gopakumar A. et al. 2021, Monthly Notices of the Royal Astronomical Society, 503, 4400

  • Donner J. Y., Verbiest J. P. W., Tiburzi C. et al. 2020, Astronomy & Astrophysics, 644, A153

    Article  Google Scholar 

  • Edwards R. T., Hobbs G. B., Manchester R. N. 2006, Monthly Notices of the Royal Astronomical Society, 372, 1549

    Article  ADS  Google Scholar 

  • Einstein A. 1918, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), Seite 154-167.

  • Estabrook F. B., Wahlquist H. D. 1975, General Relativity and Gravitation, 6, 439

    Article  ADS  Google Scholar 

  • Fonseca E., Cromartie H. T., Pennucci T. T. et al. 2021, The Astrophysical Journal Letters, 915, L12

    Article  ADS  Google Scholar 

  • Foster R. S., Backer D. C. 1990, The Astrophysical Journal, 361, 300

    Article  ADS  Google Scholar 

  • Goncharov B., Shannon R. M., Reardon D. J. et al. 2021, The Astrophysical Journal Letters, 917, L19

    Article  ADS  Google Scholar 

  • Gupta Y., Ajithkumar B., Kale H. S. et al. 2017, Current Science, 113, 707

    Article  ADS  Google Scholar 

  • Hellings R. W., Downs G. S. 1983, The Astrophysical Journal Letters, 265, L39

    Article  ADS  Google Scholar 

  • Hobbs G., Dai S. 2017, National Science Review, 4, 707

    Article  Google Scholar 

  • Hobbs G. B., Edwards R. T., Manchester R. N. 2006, Monthly Notices of the Royal Astronomical Society, 369, 655

    Article  ADS  Google Scholar 

  • Hodgson J. A., Krichbaum T. P., Marscher A. P. et al. 2017, A &A, 597, A80

    Google Scholar 

  • Hotan A. W., Van Straten W., Manchester R. N. 2004, Publications of the Astronomical Society of Australia, 21, 302

    Article  ADS  Google Scholar 

  • Janssen G., Hobbs G., McLaughlin M. et al. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 37

  • Johnston S., Sobey C., Dai S. et al. 2021, Monthly Notices of the Royal Astronomical Society, 502, 1253

    Article  ADS  Google Scholar 

  • Joshi B. C., Arumugasamy P., Bagchi M. et al. 2018, Journal of Astrophysics and Astronomy, 39, 51

    Article  ADS  Google Scholar 

  • Keane E. F. 2018, in Pulsar Astrophysics the Next Fifty Years, ed. P. Weltevrede B. B. P. Perera L. L. Preston, & S. Sanidas, Vol. 337, 158–164

  • Kerr M., Reardon D. J., Hobbs G. et al. 2020, Publications of the Astronomical Society of Australia, 37, e020

    Article  ADS  Google Scholar 

  • Königsdörffer C., Gopakumar A. 2005, Phys. Rev. D, 71, 024039

    Article  ADS  Google Scholar 

  • Kramer M., Stappers B. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 36

  • Krishnakumar M. A., Manoharan P. K., Joshi B. C. et al. 2021, Astronomy & Astrophysics, 651, A5

    Article  Google Scholar 

  • Laine S., Dey L., Valtonen M. et al. 2020, The Astrophysical Journal Letters, 894, L1

    Article  ADS  Google Scholar 

  • Lam M. T., Ellis J. A., Grillo G. et al. 2018, The Astrophysical Journal, 861, 132

    Article  ADS  Google Scholar 

  • Lee K. J. 2016, in Astronomical Society of the Pacific Conference Series, Vol. 502, Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015, eds Qain L., Li D., 19

  • Lentati L., Shannon R. M., Coles W. A. et al. 2016, Monthly Notices of the Royal Astronomical Society, 458, 2161

    Article  ADS  Google Scholar 

  • Lorimer D. R. 2011, SIGPROC: Pulsar Signal Processing Programs, ascl:1107.016

  • Maan Y., van Leeuwen J., Vohl D. 2021, Astronomy & Astrophysics, 650, A80

    Article  Google Scholar 

  • Manchester R. N., Hobbs G. B., Teoh A., Hobbs M. 2005, AJ, 129, 1993

  • Manchester R. N., Hobbs G., Bailes M. et al. 2013, Proc. Astr. Soc. Aust., 30, 17

    ADS  Google Scholar 

  • Mapelli M. 2020, Frontiers in Astronomy and Space Sciences, 7, 38

    Article  ADS  Google Scholar 

  • Memmesheimer R.-M., Gopakumar A., Schäfer G. 2004, Physical Review D, 70, 104011

    Article  ADS  Google Scholar 

  • Naidu A., Joshi B. C., Manoharan P. K., Krishnakumar M. A. 2015, Experimental Astronomy, 39, 319

    Article  ADS  Google Scholar 

  • Nice D., Demorest P., Stairs I. et al. 2015, Tempo: Pulsar timing data analysis, ascl:1509.002

  • Nobleson K., Agarwal N., Girgaonkar R. et al. 2022, Monthly Notices of the Royal Astronomical Society, 512, 1234

  • O’Neill S., Kiehlmann S., Readhead A. C. S. et al. 2022, The Astrophysical Journal Letters, 926, L35

    Article  ADS  Google Scholar 

  • Pennucci T. T., Demorest P. B., Ransom S. M. 2014, The Astrophysical Journal, 790, 93

    Article  ADS  Google Scholar 

  • Pennucci T. T., Demorest P. B., Ransom S. M. 2016, Pulse Portraiture: Pulsar timing, ascl:1606.013

  • Pennucci T. T. 2019, The Astrophysical Journal, 871, 34

    Article  ADS  Google Scholar 

  • Perera B. B. P., DeCesar M. E., Demorest P. B. et al. 2019, Monthly Notices of the Royal Astronomical Society, 490, 4666

    Article  ADS  Google Scholar 

  • Phinney E. S. 2001, arXiv e-prints, arXiv: 0108028

  • Pol N. S., Taylor S. R., Kelley L. Z. et al. 2021, The Astrophysical Journal Letters, 911, L34

    Article  ADS  Google Scholar 

  • Ransom S. 2011, PRESTO: PulsaR Exploration and Search TOolkit, ascl:1107.017

  • Reddy S. H., Kudale S., Gokhale U. et al. 2017, Journal of Astronomical Instrumentation, 06, 1641011

    Article  ADS  Google Scholar 

  • Sathyaprakash B. S., Schutz B. F. 2009, Living Reviews in Relativity, 12, 2

    Article  ADS  Google Scholar 

  • Sazhin M. V. 1978, Soviet Ast., 22, 36

    ADS  Google Scholar 

  • Soares-Santos M., Palmese A., Hartley W. et al. 2019, The Astrophysical Journal Letters, 876, L7

    Article  ADS  Google Scholar 

  • Susobhanan A., Gopakumar A., Hobbs G., Taylor S. R. 2020, Physical Review D, 101, 043022

    Article  ADS  MathSciNet  Google Scholar 

  • Susobhanan A., Maan Y., Joshi B. C. et al. 2021, Proc. Astr. Soc. Aust., 38, e017

    Article  ADS  Google Scholar 

  • Swarup G., Sarma N. V. G., Joshi M. N. et al. 1971, Nature Physical Science, 230, 185

    Article  ADS  Google Scholar 

  • Swarup G., Ananthakrishnan S., Kapahi V. K. et al. 1991, Current Science, 60, 95

    ADS  Google Scholar 

  • Taylor J. H. 1992, Philosophical Transactions of the Royal Society of London Series A, 341, 117

    Article  ADS  Google Scholar 

  • The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration et al. 2021a, arXiv e-prints, arXiv:2111.03606

  • The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration et al. 2021b, arXiv e-prints, arXiv:2112.06861

  • Tiburzi C., Shaifullah G. M., Bassa C. G. et al. 2021, Astronomy & Astrophysics, 647, A84

    Article  Google Scholar 

  • Valtonen M. J., Dey L., Gopakumar A. et al. 2021, Galaxies, 10, 1

    Article  ADS  Google Scholar 

  • Van Straten W., Bailes M. 2011, Publications of the Astronomical Society of Australia, 28, 1

    Article  ADS  Google Scholar 

  • Verbiest J. P. W., Lentati L., Hobbs G. et al. 2016, Monthly Notices of the Royal Astronomical Society, 458, 1267

    Article  ADS  Google Scholar 

  • Xin C., Mingarelli C. M. F., & Hazboun J. S. 2021, The Astrophysical Journal, 915, 97

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is carried out by InPTA, which is part of the International pulsar timing array consortium. We thank the staff of the GMRT who made our observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. BCJ, PR, AS, SD, LD and YG acknowledge the support of the Department of Atomic Energy, Government of India, under project identification # RTI4002. BCJ and YG acknowledge support from the Department of Atomic Energy, Government of India, under project # 12-R &D-TFR-5.02-0700. AS is supported in part by the National Natural Science Foundation of China Grant No. 11988101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhal Chandra Joshi.

Additional information

This article is part of the Special Issue on “Indian Participation in the SKA”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, B.C., Gopakumar, A., Pandian, A. et al. Nanohertz gravitational wave astronomy during SKA era: An InPTA perspective. J Astrophys Astron 43, 98 (2022). https://doi.org/10.1007/s12036-022-09869-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09869-w

Keywords

Navigation