Skip to main content
Log in

Dispersive features of electrostatic waves in bounded quantum plasma under the effect of ionization

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Bounded plasma occur in waveguide of nanodevices with dielectric boundaries and the dimension of nanodevices control the frequency of oscillation and particle acceleration. A system with cylindrical bounded quantum plasma is used to study the electrostatic wave instability in the presence of magnetic field. Bohm potential, exchange-correlation potential and Fermi pressure significantly affect the characteristic frequency of oscillation of particle in bounded plasma. Using quantum hydrodynamic model, basic equations of cylindrical bounded quantum plasma are constructed and linearized under the effect of ionization rate. Dispersion relation for growing waves is obtained, which shows dependence on ionization rate, magnetic field, number density, wave vector and geometry of cylindrical waveguide. We investigated that growth rate increases with magnetic field, ionization rate, number density and poles of Bessel’s function, whereas it decreases with wave vector and radius of waveguide. The present investigation is performed on the basis of numerical parameters of astrophysical plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

Download references

Acknowledgements

The University Grants Commission (UGC), New Delhi, is thankfully acknowledged for providing the financial support grant (No. F. 30-356/2017/BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhmander Singh.

Additional information

This article is part of the Special Issue on “Waves, Instabilities and Structure Formation in Plasmas”.

Appendix

Appendix

The coefficients used in Equation (11) are given below:

$$\begin{aligned}{ A}_0&=i\omega _{ce}\omega _{pe}^2\mu ^2, \end{aligned}$$
(12)
$$\begin{aligned} B_0&=(-\alpha ^4\mu ^2-V_f^4k^4\mu ^2-\alpha \omega _{ce}\omega _{pe}^2 \mu ^2-k_\Vert ^2\alpha ^4-k_\Vert ^2V_f^4k^4 \nonumber \\&\quad +2\alpha ^2V_f^2k^2k_{\Vert }^2-k^4V_f^2\omega _{pe}^2 +\alpha ^2k^2\omega _{pe}^2+2\alpha ^2V_f^2k^2\mu ^2), \end{aligned}$$
(13)
$$\begin{aligned}C_0&=\mu ^2(-2i\alpha ^5-2i\alpha V_f^4k^4+2i\alpha ^3V_f^2k^2-i\omega _{ci}^2 \omega _{ce}\omega _{pe}^2 \nonumber \\&\quad -2i\alpha ^2\omega _{ce}\omega _{pe}^2+4i\alpha ^2\omega _{ce}\omega _{pe}^2 -k_{\Vert }^2(2i\alpha ^5+2i\alpha V_f^4k^4 \nonumber \\&\quad -4i\alpha ^3V_f^2k^2)-k^2(2i\alpha V_f^2k^2\omega _{pe}^2-2i\alpha ^3\omega _{pe}^2), \end{aligned}$$
(14)
$$\begin{aligned}D_0=\mu ^2(\omega _{ci}^2\alpha ^4+\omega _{ci}^2V_f^4k^4 - 2\omega _{ci}^2\alpha ^2V_f^2k^2-\alpha \omega _{ci}^2\omega _{ce}\omega _{pe}^2\nonumber \\\quad -2\alpha ^3\omega _{ce}\omega _{pe}^2+\alpha ^4\omega _{pi}^2 +V_f^4k^4\omega _{pi}^2-2\alpha ^2V_f^2k^2\omega _{pi}^2)\nonumber \\\quad -k_{\Vert }^2(-\alpha ^4\omega _{pi}^2-\omega _{pi}^2V_f^4k^4+2\alpha ^2V_f^2k^2\omega _{pi}^2-\alpha ^4\omega _{ci}^2\nonumber \\\quad -V_f^4k^4\omega _{ci}^2+2\alpha ^2V_f^2k^2\omega _{ci}^2)-k^2(\alpha ^2\omega _{ci}^2\omega _{pe}^2\nonumber \\\quad -\omega _{ci}^2\omega _{pe}^2V_f^2k^2), \end{aligned}$$
(15)
$$\begin{aligned}E_0&=\mu ^2i(-2\alpha ^7-2\alpha ^3V_f^4k^4+2\alpha ^5V_f^2k^2-\alpha ^2\omega _{ci}^2\omega _{ce}\omega _{pe}^2\nonumber \\&\quad +\alpha ^4\omega _{ce}\omega _{e}^2+2\alpha ^5\omega _{pi}^2+2\alpha V_f^4k^4\omega _{pi}^2-4\alpha ^3V_f^2k^2\omega _{pi}^2\nonumber \\&\quad +\omega _{ci}\alpha ^4\omega _{pi}^2+\omega _{ci}V_f^4k^4\omega _{pi}^2-2\alpha ^2\omega _{ci}\omega _{pi}^2V_f^2k^2)\nonumber \\&\quad -k_{\Vert }^2i(-2\alpha ^5\omega _{pi}^2-2\alpha V_f^4k^4\omega _{pi}^2+4\alpha ^3V_f^2k^2\omega _{pi}^2+2\alpha ^7\nonumber \\&\quad +2\alpha ^3V_f^4k^4-4\alpha ^5V_f^2k^2)-k^2i(-2\alpha ^5\omega _{pe}^2\nonumber \\&\quad +2\alpha ^3V_f^2k^2\omega _{pe}^2), \end{aligned}$$
(16)
$$\begin{aligned}F_0&=\mu ^2(-\omega _{ci}^2\alpha ^6-\alpha ^2V_f^4k^4\omega _{ci}^2-2\alpha ^4\omega _{ci}^2V_f^2k^2+\alpha ^8\nonumber \\&\quad +\alpha ^4V_f^4k^4-2\alpha ^6V_f^2k^2-\alpha ^3\omega _{ci}^2\omega _{ce}\omega _{pe}^2-\alpha ^5\omega _{ce}\omega _{pe}^2\nonumber \\&\quad -\alpha ^6\omega _{pi}^2\nonumber -\alpha ^2V_f^4k^4\omega _{pi}^2+2\alpha ^4V_f^2k^2\omega _{pi}^2-\alpha ^5\omega _{ci}\omega _{pi}^2\nonumber \\&\quad -\alpha \omega _{ci}V_f^4k^4\omega _{pi}^2+2\alpha ^3\omega _{ci}V_f^2k^2\omega _{pi}^2)-k_{\Vert }^2{(\alpha }^4\omega _{pi}^2\omega _{ci}^2\nonumber \\&\quad +\alpha ^6\omega _{pi}^2+\omega _{ci}^2\omega _{pi}^2V_f^4k^4 +{ \alpha }^2V_f^4k^4\omega _{pi}^2-\alpha ^6\omega _{ci}^2\nonumber \\&\quad -2\alpha ^2V_f^2k^2\omega _{ci}^2\omega _{pi}^2-2\alpha ^4V_f^2k^2\omega _{pi}^2-\alpha ^2V_f^4k^4\omega _{ci}^2\nonumber \\&\quad + 2\alpha ^4V_f^2k^2\omega _{ci}^2-\alpha ^8-\alpha ^4V_f^4k^4+2\alpha ^6V_f^2k^2)\nonumber \\&\quad -k^2(\alpha ^4\omega _{ci}^2\omega _{pe}^2-\alpha ^2V_f^2k^2\omega _{ci}^2\omega _{pe}^2+ \alpha ^6\omega _{pe}^2\nonumber \\&\quad -\alpha ^4V_f^2k^2\omega _{pe}^2). \end{aligned}$$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashish, Singh, S. Dispersive features of electrostatic waves in bounded quantum plasma under the effect of ionization. J Astrophys Astron 43, 59 (2022). https://doi.org/10.1007/s12036-022-09857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09857-0

Keywords

Navigation