Skip to main content
Log in

A multiresolution approach to enhance small telescope data under non-ideal conditions

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Astronomical imaging of a star cluster is one of the paramount ways to learn about stellar evolution, stellar dynamics. A large telescope is not generally accessible to all observers. In that context, small telescope observations with a proper denoising scheme can be an excellent alternative. This paper proposes a technique to denoise star cluster data using an undecimated wavelet transform, with a modified thresholding process. Our work aims to prove the effectiveness of such a wavelet-based technique on real-time data. We present drastically noise-infested observational data of the NGC 2301 star cluster, captured over five nights from Fr. Eugene Lafont Observatory, Kolkata. We observe that for highly noise-polluted data, the conventional methods of dark frame subtraction and flat frame division are inadequate to produce the desired quality of images due to functioning exclusively in the spatial domain. Thus, we take the wavelet-based multiresolution approach to ameliorate those raw images. We also introduce a modified thresholding function to modulate the image at different resolution levels. A standard star detecting software Daophot II quantifies the increment in the number of detected stars from raw images to the images processed by our proposed method as: for red filter 397–903, for green filter 663–945, for blue filter 362–896. On the contrary, Daophot II can’t detect any star in the highly noise-polluted images processed by the conventional methods. Therefore, we hope our proposed processing methodology will motivate others to initiate small telescope observations from any site restrained by its geographical location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Atkinson D. E., Hall D. N., Jacobson S. M., Baker I. M. 2017, Astron. J. 154, 265

    Article  ADS  Google Scholar 

  • Carroll B. W., Ostlie D. A. 2006, An introduction to modern astrophysics and cosmology/BW Carroll and DA Ostlie. 2nd edition, San Francisco: Pearson

    Google Scholar 

  • Cohen A., Daubechies I., Feauveau J.-C. 1992, Commun. Pure Appl. Math., 45, 485

    Article  Google Scholar 

  • Cohen L. 1995, Time-Frequency Analysis/Leon Cohen. Prentice Hall PTR Englewood Cliffs, New Jersey, p 299

    Google Scholar 

  • Dasgupta S., Gosain A. K., Rao S., Roy S., Sarraf M. 2013, Clim. Change, 116, 747

    Article  ADS  Google Scholar 

  • Daubechies I. 1992, Ten lectures on wavelets (SIAM)

  • Donoho D. L. 1992, in Presented on the International Conference on Wavelets and Applications, Tolouse, France

  • Donoho D. L., Johnstone I. M. 1995, J. Am. Stat. Assoc., 90, 1200

    Article  Google Scholar 

  • Faraji H., MacLean W. J. 2006, IEEE Trans. Image Process., 15, 2676

    Article  ADS  Google Scholar 

  • Gonzalez R., Woods R. 2008, Digital Image Processing 3rd Edition, 461

  • Grubissich C., Purgathofer A. 1962, Zeitschrift fur Astrophysik, 54, 41

    ADS  Google Scholar 

  • Holschneider M., Kronland-Martinet R., Morlet J., Tchamitchian P. 1990, in Wavelets. Springer, 286

  • Karttunen H., Kröger P., Oja H., Poutanen M., Donner K. J. 2016, Fundamental Astronomy. Springer, Berlin

  • Koppelman M. 2005, Soc. Astron. Sci. Ann. Symp., 24, 107

    ADS  Google Scholar 

  • Mallat S. 2008, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. Academic Press, Inc., New York

    Google Scholar 

  • Mallat S. G. 1989, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674

    Article  ADS  Google Scholar 

  • Miles R. 1998, J. Br. Astron. Assoc., 108, 65

    ADS  Google Scholar 

  • Pan C., Weng F., Beck T., et al. 2016, in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 1966

  • Park W., Pak S., Shim H., et al. 2016, Adv. Space Res., 57, 509

    Article  ADS  Google Scholar 

  • Polikar R., et al. 1996, The wavelet tutorial, http://users.rowan.edu/~Polikar/WTtutorial.html

  • Resnikoff H. L., Raymond Jr O., et al. 2012, Wavelet Analysis: The Scalable Structure of Information. Springer, Berlin

    MATH  Google Scholar 

  • Saha S. K. 2002, Rev. Modern Phys., 74, 551

    Article  ADS  Google Scholar 

  • Shensa M. J. 1992, IEEE Trans. Signal Process., 40, 2464

    Article  ADS  Google Scholar 

  • Starck J.-L., Murtagh F. 1994, Astron. Astrophys., 288, 342

    ADS  Google Scholar 

  • Starck J. L., Murtagh F., Bijaoui A. 1995, in Astronomical Society of the Pacific Conference Series, Vol 77, Astronomical Data Analysis Software and Systems IV, eds Shaw R. A., Payne H. E., Hayes J. J. E., p 279

  • Starck J.-L., Murtagh F., Fadili J. M. 2010, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity. Cambridge University Press, Cambridge

  • Stetson P. B. 1987, Publ. Astron. Soc. Pac., 99, 191

    Article  ADS  Google Scholar 

  • Strang G. 1989, SIAM Rev., 31, 614

    Article  MathSciNet  Google Scholar 

  • Strang G. 1993, Bull. Am. Math. Soc., 28, 288

    Article  Google Scholar 

  • Tangirala A. K. 2018, Principles of System Identification: Theory and Practice. CRC Press, Boca Raton

  • Torrence C., Compo G. P. 1998, Bull. Am. Meteorol. Soc., 79, 61

    Article  ADS  Google Scholar 

  • Vesperini E. 2010, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 368, 829

    Google Scholar 

  • Vetterli M., Kovacevic J. 1995, Wavelets and Subband Coding. Prentice Hall, Hoboken

Download references

Acknowledgements

The authors would like to thank Anjasha Gangopadhyay, faculty at Hiroshima Astrophysical Science Center, Hiroshima University, Japan, for valuable discussions and technical assistance for detecting stars using Daophot II. Special thanks to Subhash Bose, faculty at Department of Astronomy, The Ohio State University for insightful discussions on Johnson–Cousins BV R Filter System and isochrone fitting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraborty.

Appendix A. Histogram plots showing gain in star count

Appendix A. Histogram plots showing gain in star count

See Figure 19.

Figure 19
figure 19

Two histograms depicting star counts for the HNSTD processed data and raw data as detected using Daophot II. \(V_J\) is Johnson V magnitude. The violet region represents overlap of data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Mondal, T., Debnath, A. et al. A multiresolution approach to enhance small telescope data under non-ideal conditions. J Astrophys Astron 43, 22 (2022). https://doi.org/10.1007/s12036-022-09807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09807-w

Keywords

Navigation