Skip to main content

Advertisement

Log in

Dual Role of TRPV1 Channels in Cerebral Stroke: An Exploration from a Mechanistic and Therapeutic Perspective

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid subfamily member 1 (TRPV1) has been strongly implicated in the pathophysiology of cerebral stroke. However, the exact role and mechanism remain elusive. TPRV1 channels are exclusively present in the neurovascular system and involve many neuronal processes. Numerous experimental investigations have demonstrated that TRPV1 channel blockers or the lack of TRPV1 channels may prevent harmful inflammatory responses during ischemia–reperfusion injury, hence conferring neuroprotection. However, TRPV1 agonists such as capsaicin and some other non-specific TRPV1 activators may induce transient/slight degree of TRPV1 channel activation to confer neuroprotection through a variety of mechanisms, including hypothermia induction, improving vascular functions, inducing autophagy, preventing neuronal death, improving memory deficits, and inhibiting inflammation. Another factor in capsaicin-mediated neuroprotection could be the desensitization of TRPV1 channels. Based on the summarized evidence, it may be plausible to suggest that TPRV1 channels have a dual role in ischemia–reperfusion-induced cerebral injury, and thus, both agonists and antagonists may produce neuroprotection depending upon the dose and duration. The current review summarizes the dual function of TRPV1 in ischemia–reperfusion-induced cerebral injury models, explains its mechanism, and predicts the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The original figures will be submitted on requirement.

Abbreviations

BACCO :

Bilateral carotid artery occlusion

BCP :

Beta-caryophyllene

BDNF :

Brain-derived neurotrophic factor

C.B. :

Cannabinoid

DRG :

Dorsal root of ganglia

EA :

Electroacupuncture

E.R. :

Endoplasmic reticulum

ERK :

Extracellular signal-regulated kinase

eNOS :

Endothelial nitric oxide synthase

FAF1 :

Fas-associated factor

ICV :

Intracerebrovascular

JNK :

C-Jun N terminal kinase

MAM :

Mitochondrial-associated membrane

MAPK :

Mitogenic

MCAO :

Middle cerebral artery occlusion

MNF2 :

Mitofusin 2

NF-kB :

Nuclear factor kappa B

NS :

Nitrosative stress

O.S.:

Oxidative stress

ROS :

Reactive oxygen species

SNPC :

Substantia nigra pars compacta

TG :

Trigeminal neurons

TLR :

Toll-like receptor

TrkB :

Tropomyosin receptor kinases B

TRPV1 :

Transient receptor potential vanilloid ion channel one

References

  1. Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A (2020) Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci 21(18):18

    Article  Google Scholar 

  2. Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, Abbasifard M, Abbasi-Kangevari M et al (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology 20(10):795–820

    Article  CAS  Google Scholar 

  3. Jones SP, Baqai K, Clegg A, Georgiou R, Harris C, Holland E-J, Kalkonde Y, Lightbody CE et al (2022) Stroke in India: a systematic review of the incidence, prevalence, and case fatality. Int J Stroke 17(2):132–140

    Article  PubMed  Google Scholar 

  4. Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci 21(20):7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen D, Yu SP, Wei L (2014) Ion channels in regulation of neuronal regenerative activities. Transl Stroke Res 5:156–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patabendige A, Singh A, Jenkins S, Sen J, Chen R (2021) Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int J Mol Sci 22(8):4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song M, Yu SP (2014) Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 5:17–27

    Article  CAS  PubMed  Google Scholar 

  8. Samanta A, Hughes TE, Moiseenkova-Bell VY (2018) Transient receptor potential (TRP) channels. Membrane Protein Complexes: Struct Function 141–165

  9. Wang R, Tu S, Zhang J, Shao A (2020) Roles of TRP channels in neurological diseases. Oxid Med Cell Longev 2020

  10. Seebohm G, Schreiber JA (2021) Beyond hot and spicy: TRPV channels and their pharmacological modulation. Cell Physiol Biochem 55(S3):108–130

    Article  PubMed  Google Scholar 

  11. Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T (2020) TRPV1: structure, endogenous agonists, and mechanisms. Int J Mol Sci 21(10):3421

    Article  PubMed  PubMed Central  Google Scholar 

  12. da Silva Fiorin F, do Espírito Santo CC, do Nascimento RS, Cassol G, Plácido E, Santos ARS, Marques JLB, Brocardo PS, et al (2020) Capsaicin-sensitive fibers mediate periorbital allodynia and activation of inflammatory cells after traumatic brain injury in rats: involvement of TRPV1 channels in post-traumatic headache. Neuropharmacology 176: 108215

  13. Kim J, Seo S, Park JHY, Lee KW, Kim J, Kim J-C (2023) Ca2+-permeable TRPV1 receptor mediates neuroprotective effects in a mouse model of Alzheimer’s disease via BDNF/CREB signaling pathway. Mol Cells 46(5):319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu J, Zhou W, Dou F, Wang C, Yu Z (2021) TRPV1 sustains microglial metabolic reprogramming in Alzheimer’s disease. EMBO Rep 22(6):e52013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nam JH, Park ES, Won S-Y, Lee YA, Kim KI, Jeong JY, Baek JY, Cho EJ et al (2015) TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain 138(12):3610–3622

    Article  PubMed  PubMed Central  Google Scholar 

  16. Randhawa PK, Jaggi AS (2018) A review on potential involvement of TRPV1 channels in ischemia–reperfusion injury. J Cardiovasc Pharmacol Ther 23(1):38–45

    Article  CAS  PubMed  Google Scholar 

  17. Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32(4):215–224

    Article  CAS  PubMed  Google Scholar 

  18. Miyanohara J, Shirakawa H, Sanpei K, Nakagawa T, Kaneko S (2015) A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice. Biochem Biophys Res Commun 467(3):478–483

    Article  CAS  PubMed  Google Scholar 

  19. Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F (2020) Endothelial TRPV1 as an emerging molecular target to promote therapeutic angiogenesis. Cells 9(6):1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khatibi NH, Jadhav V, Charles S, Chiu J, Buchholz J, Tang J, Zhang JH (2011) Capsaicin pre-treatment provides neurovascular protection against neonatal hypoxic-ischemic brain injury in rats. Acta Neurochir Suppl 111:225–230

    Article  PubMed  PubMed Central  Google Scholar 

  21. Muzzi M, Felici R, Cavone L, Gerace E, Minassi A, Appendino G, Moroni F, Chiarugi A (2012) Ischemic neuroprotection by TRPV1 receptor-induced hypothermia. J Cereb Blood Flow Metab 32(6):978–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo J, Chen J, Yang C, Tan J, Zhao J, Jiang N, Zhao Y (2021) 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1 / FAF1 complex dissociation-mediated autophagy. Int Immunopharmacol 100:108146

    Article  CAS  PubMed  Google Scholar 

  23. Serra MP, Boi M, Carta A, Murru E, Carta G, Banni S, Quartu M (2022) Anti-inflammatory effect of beta-caryophyllene mediated by the involvement of TRPV1, BDNF and TrkB in the rat cerebral cortex after hypoperfusion/reperfusion. Int J Mol Sci 23(7):3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu X, Wang P, Zhao Z, Cao T, He H, Luo Z, Zhong J, Gao F et al (2011) Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Stroke 42(11):3245–3251

    Article  CAS  PubMed  Google Scholar 

  25. Hakimizadeh E, Shamsizadeh A, Roohbakhsh A, Arababadi MK, Hajizadeh MR, Shariati M, Fatemi I, Moghadam-Ahmadi A et al (2017) TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats. Iran J Basic Med Sci 20(8):863

    PubMed  PubMed Central  Google Scholar 

  26. Hakimizadeh E, Shamsizadeh A, Roohbakhsh A, Arababadi MK, Hajizadeh MR, Shariati M, Rahmani MR, Allahtavakoli M (2017) Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model. Fundam Clin Pharmacol 31(4):420–428

    Article  CAS  PubMed  Google Scholar 

  27. Long M, Wang Z, Zheng D, Chen J, Tao W, Wang L, Yin N, Chen Z (2019) Electroacupuncture pretreatment elicits neuroprotection against cerebral ischemia-reperfusion injury in rats associated with transient receptor potential vanilloid 1-mediated anti-oxidant stress and anti-inflammation. Inflammation 42(5):1777–1787

    Article  CAS  PubMed  Google Scholar 

  28. Szallasi A, Blumberg PM (2007) Complex regulation of TRPV1 by vanilloids. In Liedtke WB & Heller S (Eds.), TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL):CRC Press/Taylor & Francis. http://www.ncbi.nlm.nih.gov/books/NBK5246/. Accessed 10 Dec 2023

  29. Long M, Wang Z, Shao L, Bi J, Chen Z, Yin N (2022) Electroacupuncture pretreatment attenuates cerebral ischemia-reperfusion injury in rats through transient receptor potential vanilloid 1-mediated anti-apoptosis via inhibiting NF-κB signaling pathway. Neuroscience 482:100–115

    Article  CAS  PubMed  Google Scholar 

  30. Cui Y, Yang F, Cao X, Yarov-Yarovoy V, Wang K, Zheng J (2012) Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. J Gen Physiol 139(4):273–283. https://doi.org/10.1085/jgp.201110724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo L, Wang Y, Li B, Xu L, Kamau PM, Zheng J, Yang F, Yang S et al (2019) Molecular basis for heat desensitization of TRPV1 ion channels. Nat Commun 10(1):1

    Article  Google Scholar 

  32. Ristoiu V, Shibasaki K, Uchida K, Zhou Y, Ton B-HT, Flonta M-L, Tominaga M (2011) Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain 152(4):936–945

    Article  CAS  PubMed  Google Scholar 

  33. Kim KS, Yoo HY, Park KS, Kim JK, Zhang Y-H, Kim SJ (2012) Differential effects of acute hypoxia on the activation of TRPV1 by capsaicin and acidic pH. J Physiol Sci: JPS 62(2):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao Y, Song J, Chen H, Cao C, Lee C (2015) TRPV1 activation is involved in the cardioprotection of remote limb ischemic postconditioning in ischemia-reperfusion injury rats. Biochem Biophys Res Commun 463(4):1034–1039

    Article  CAS  PubMed  Google Scholar 

  35. Randhawa PK, Jaggi AS (2015) TRPV1 and TRPV4 channels: Potential therapeutic targets for ischemic conditioning-induced cardioprotection. Eur J Pharmacol 746:180–185. https://doi.org/10.1016/j.ejphar.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  36. Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 194:283–332

    Article  CAS  Google Scholar 

  37. Cao Z, Balasubramanian A, Marrelli SP (2014) Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion. Am J Physiol Regul Integr Comp Physiol 306(2):R149-156. https://doi.org/10.1152/ajpregu.00329.2013

    Article  CAS  PubMed  Google Scholar 

  38. Yang F, Ma L, Cao X, Wang K, Zheng J (2014) Divalent cations activate TRPV1 through promoting conformational change of the extracellular region. J Gen Physiol 143(1):91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ouyang M, Zhang Q, Shu J, Wang Z, Fan J, Yu K, Lei L, Li Y et al (2022) Capsaicin ameliorates the loosening of mitochondria-associated endoplasmic reticulum membranes and improves cognitive function in rats with chronic cerebral hypoperfusion. Front Cell Neurosci 16:822702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin Y, Huang T, Shen W, Pang Q, Xie Q, Chen X, Tu F (2022) TRPV1 suppressed NLRP3 through regulating autophagy in microglia after ischemia-reperfusion injury. J Mol Neurosc: MN 72(4):792–801. https://doi.org/10.1007/s12031-021-01935-2

    Article  CAS  Google Scholar 

  41. Farfariello V, Amantini C, Santoni G (2012) Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J Leukoc Biol 92(3):421–431

    Article  CAS  PubMed  Google Scholar 

  42. Iannotti FA, Pagano E, Moriello AS, Alvino FG, Sorrentino NC, D’Orsi L, Gazzerro E, Capasso R et al (2019) Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. Br J Pharmacol 176(10):1568–1584

    Article  CAS  PubMed  Google Scholar 

  43. Wei J, Lin J, Zhang J, Tang D, Xiang F, Cui L, Zhang Q, Yuan H et al (2020) TRPV1 activation mitigates hypoxic injury in mouse cardiomyocytes by inducing autophagy through the AMPK signaling pathway. Am J Physiol Cell Physiol 318(5):C1018–C1029

    Article  CAS  PubMed  Google Scholar 

  44. He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215

    Article  CAS  PubMed  Google Scholar 

  45. Ning J, Junyi T, Chang M, Yueting W, Jingyan Z, Jin Z, Jing Z, Yong Z (2019) TOM7 silencing exacerbates focal cerebral ischemia injury in rat by targeting PINK1/Beclin1-mediated autophagy. Behav Brain Res 360:113–119

    Article  CAS  PubMed  Google Scholar 

  46. Alexiou A, Nizami B, Khan FI, Soursou G, Vairaktarakis C, Chatzichronis S, Tsiamis V, Manztavinos V et al (2018) Mitochondrial dynamics and proteins related to neurodegenerative diseases. Curr Protein Pept Sci 19(9):850–857

    Article  CAS  PubMed  Google Scholar 

  47. Csordás G, Weaver D, Hajnóczky G (2018) Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. Trends Cell Biol 28(7):523–540

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gelmetti V, De Rosa P, Torosantucci L, Marini ES, Romagnoli A, Di Rienzo M, Arena G, Vignone D et al (2017) PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13(4):654–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Veeresh P, Kaur H, Sarmah D, Mounica L, Verma G, Kotian V, Kesharwani R, Kalia K et al (2019) Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Ann N Y Acad Sci 1457(1):41–60

    Article  PubMed  Google Scholar 

  50. Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P (2015) Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 22(12):995–1019

    Article  CAS  PubMed  Google Scholar 

  51. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P (2015) Mitofusin 2 ablation increases endoplasmic reticulum–mitochondria coupling. Proc Natl Acad Sci 112(17):E2174–E2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rutkai I, Merdzo I, Wunnava SV, Curtin GT, Katakam PV, Busija DW (2019) Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab 39(6):1056–1068

    Article  CAS  PubMed  Google Scholar 

  53. Peng C, Rao W, Zhang L, Wang K, Hui H, Wang L, Su N, Luo P et al (2015) Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways. Int J Biochem Cell Biol 69:29–40

    Article  CAS  PubMed  Google Scholar 

  54. Klacanova K, Kovalska M, Chomova M, Pilchova I, Tatarkova Z, Kaplan P, Racay P (2019) Global brain ischemia in rats is associated with mitochondrial release and downregulation of Mfn2 in the cerebral cortex, but not the hippocampus. Int J Mol Med 43(6):2420–2428

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, Sesaki H, Lagace DC et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19(2):232–247

    Article  CAS  PubMed  Google Scholar 

  56. Su L, Zhang Y, He K, Wei S, Pei H, Wang Q, Yang D, Yang Y (2017) Activation of transient receptor potential vanilloid 1 accelerates re-endothelialization and inhibits neointimal formation after vascular injury. J Vasc Surg 65(1):197–205

    Article  PubMed  Google Scholar 

  57. Bothwell M (2014). Ngf, bdnf, nt3, and nt4. Neurotrophic Factors 3–15

  58. Castrén E, Antila H (2017) Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 22(8):1085–1095

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kokaia Z, Nawa H, Uchino H, Elmer E, Kokaia M, Carnahan J, Smith M-L, Siesjö BK et al (1996) Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat. Mol Brain Res 38(1):139–144

    Article  CAS  PubMed  Google Scholar 

  60. Narumiya S, Ohno M, Tanaka N, Yamano T, Shimada M (1998) Enhanced expression of full-length TrkB receptors in young rat brain with hypoxic/ischemic injury. Brain Res 797(2):278–286

    Article  CAS  PubMed  Google Scholar 

  61. Yang XL, Wang X, Shao L, Jiang GT, Min JW, Mei XY, He XH, Liu WH, Huang WX, Peng BW (2019) TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI). J Neuroinflamm 16(1):114. https://doi.org/10.1186/s12974-019-1487-3

    Article  CAS  Google Scholar 

  62. Wang X, Yang XL, Kong WL, Zeng ML, Shao L, Jiang GT, Cheng JJ, Kong S, He XH, Liu WH, Chen TX, Peng BW (2019) TRPV1 translocated to astrocytic membrane to promote migration and inflammatory infiltration thus promotes epilepsy after hypoxic ischemia in immature brain. J Neuroinflammation 16(1):214. https://doi.org/10.1186/s12974-019-1618-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gavva NR, Treanor JJ, Garami A, Fang L, Surapaneni S, Akrami A, Alvarez F, Bak A et al (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136(1–2):202–210. https://doi.org/10.1016/j.pain.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  64. Sun J, Nan G (2016) The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 59:90–98

    Article  CAS  PubMed  Google Scholar 

  65. Cheng C-Y, Lin J-G, Tang N-Y, Kao S-T, Hsieh C-L (2015) Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med 15:1–15

    Article  Google Scholar 

  66. Lan X, Zhang X, Zhou G, Wu C, Li C, Xu X (2017) Electroacupuncture reduces apoptotic index and inhibits p38 mitogen-activated protein kinase signaling pathway in the hippocampus of rats with cerebral ischemia/reperfusion injury. Neural Regen Res 12(3):409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu L, Chen D, Zhou Z, Yuan J, Chen Y, Sun M, Zhou M, Liu Y et al (2023) Traditional Chinese medicine in treating ischemic stroke by modulating mitochondria: a comprehensive overview of experimental studies. Front Pharmacol 14:1138128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Christian F, Smith EL, Carmody RJ (2016) The regulation of NF-κB subunits by phosphorylation. Cells 5(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hakimizadeh E, Kazemi Arababadi M, Shamsizadeh A, Roohbakhsh A, Allahtavakoli M (2016) The possible role of toll-like receptor 4 in the pathology of stroke. NeuroImmunoModulation 23(3):131–136

    Article  CAS  PubMed  Google Scholar 

  70. Jin R, Liu L, Zhang S, Nanda A, Li G (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6:834–851

    Article  PubMed  Google Scholar 

  71. Li Y, Adamek P, Zhang H, Tatsui CE, Rhines LD, Mrozkova P, Li Q, Kosturakis AK et al (2015) The cancer chemotherapeutic paclitaxel increases human and rodent sensory neuron responses to TRPV1 by activation of TLR4. J Neurosci 35(39):13487–13500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Öztürk A, Yıldız L (2011) Expression of transient receptor potential vanilloid receptor 1 and toll-like receptor 4 in aggressive periodontitis and in chronic periodontitis. J Periodontal Res 46(4):475–482

    Article  PubMed  Google Scholar 

  73. Nagy I, Sántha P, Jancsó G, Urbán L (2004) The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 500(1–3):351–369

    Article  CAS  PubMed  Google Scholar 

  74. Sanz-Salvador L, Andrés-Borderia A, Ferrer-Montiel A, Planells-Cases R (2012) Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem 287(23):19462–19471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang F, Zheng J (2017) Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 8(3)

Download references

Acknowledgements

The authors are thankful to the Central University of Punjab, Bathinda, India, for providing research facilities.

Funding

The authors are thankful to the Ministry of Tribal Affairs, Government of India, for providing NFST financial support. The authors are also grateful to the Department of Science and Technology–Science and Engineering Research Board EEQ/2022/000997, New Delhi, for their gratefulness for providing us financial assistance and Central University of Punjab, Bathinda, India, for supporting us.

Author information

Authors and Affiliations

Authors

Contributions

MH and MS collected the literature and wrote the manuscript. HS reviewed the findings and hypothesized the plausible mechanism. RG finalized the table and figures. ASJ analyzed the manuscript findings and wrote the paper. AB drafted the idea and prepared the manuscript. All authors have contributed equally.

Corresponding authors

Correspondence to Amteshwar Singh Jaggi or Anjana Bali.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

NA.

Consent for Publication

NA.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanifa, M., Suri, M., Singh, H. et al. Dual Role of TRPV1 Channels in Cerebral Stroke: An Exploration from a Mechanistic and Therapeutic Perspective. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04221-5

Keywords

Navigation