Skip to main content

Advertisement

Log in

Cellular and Molecular Responses to Mitochondrial DNA Deletions in Kearns-Sayre Syndrome: Some Underlying Mechanisms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Kearns-Sayre syndrome (KSS) is a rare multisystem mitochondrial disorder. It is caused by mitochondrial DNA (mtDNA) rearrangements, mostly large-scale deletions of 1.1–10 kb. These deletions primarily affect energy supply through impaired oxidative phosphorylation and reduced ATP production. This impairment gives rise to dysfunction of several tissues, in particular those with high energy demand like brain and muscles. Over the past decades, changes in respiratory chain complexes and energy metabolism have been emphasized, whereas little attention has been paid to other reports on ROS overproduction, protein synthesis inhibition, myelin vacuolation, demyelination, autophagy, apoptosis, and involvement of lipid raft and oligodendrocytes in KSS. Therefore, this paper draws attention towards these relatively underemphasized findings that might further clarify the pathologic cascades following deletions in the mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Martens M, Peterson P, Lee C, Nigro M, Hart Z, Glasberg M et al (1988) Kearns-Sayre syndrome: biochemical studies of mitochondrial metabolism. Ann Neurol 24:630–637

    Article  PubMed  CAS  Google Scholar 

  2. Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G et al (2022) Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: a systematic review. EBioMedicine 76:103815

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brown G (2005) Congenital brain malformations in mitochondrial disease. J Inherit Metab Dis 28:393–401

    Article  PubMed  CAS  Google Scholar 

  4. Kearns TP, Sayre GP (1958) Retinitis pigmentosa, external ophthalmophegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA Arch Ophthalmol 60:280–289

    Article  PubMed  CAS  Google Scholar 

  5. Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW et al (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63:35–39

    Article  PubMed  CAS  Google Scholar 

  6. Cisneros A, Henderson JO (2021) Kearns Sayre Syndrome: a mitochondrial disorder. J Stud Res. 10

  7. Gustafson MA, McCormick EM, Perera L, Longley MJ, Bai R, Kong J et al (2019) Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSMD) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes. PLoS ONE 14:e0221829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ryzhkova AI, Sazonova MA, Sinyov VV, Galitsyna EV, Chicheva MM, Melnichenko AA et al (2018) Mitochondrial diseases caused by mtDNA mutations: a mini-review. Ther Clin Risk Manag 14:1933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Shemesh A, Margolin E (2022) Margolin E. Kearns Sayre syndrome. StatPearls Publishing, StatPearls Treasure Island (FL)

    Google Scholar 

  10. Lester Sequiera G, Srivastava A, Alagarsamy KN, Rockman-Greenberg C, Dhingra S (2021) Generation and evaluation of isogenic iPSC as a source of cell replacement therapies in patients with Kearns Sayre syndrome. Cells 10:568

    Article  PubMed  PubMed Central  Google Scholar 

  11. Szalardy L, Fort Molnár M, Török R, Zadori D, Vecsei L, Klivenyi P et al (2016) Histopathological comparison of Kearns-Sayre syndrome and PGC-1α-deficient mice suggests a novel concept for vacuole formation in mitochondrial encephalopathy. Folia Neuropathol 54:9–22

    Article  PubMed  CAS  Google Scholar 

  12. Maceluch JA, Niedziela M (2006) The clinical diagnosis and molecular genetics of kearns-sayre syndrome: a complex mitochondrial encephalomyopathy. Pediatr Endocrinol Rev 4:117–137

    PubMed  Google Scholar 

  13. Berenbaum F, Cote D, Pradat P, Rancurel G (1990) Kearns-Sayre syndrome. Neurology 40:193–193

    Article  PubMed  CAS  Google Scholar 

  14. Harvey J, Barnett D (1992) Endocrine dysfunction in Kearns-Sayre syndrome. Clin Endocrinol 37:97–104

    Article  CAS  Google Scholar 

  15. Goldstein A, Falk MJ (1993) Mitochondrial DNA deletion syndromes. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH et al (eds) GeneReviews(®). University of Washington, Seattle, Place, Published

    Google Scholar 

  16. Berardo A, DiMauro S, Hirano M (2010) A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep 10:118–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med. 325–332

  18. Clarke A (1990) Mitochondrial genome: defects, disease, and evolution. J Med Genet 27:451–456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sarnat HB, Marín-García J (2005) Pathology of mitochondrial encephalomyopathies. Can J Neurol Sci 32:152–166

    Article  PubMed  Google Scholar 

  20. Barrera-Ramírez CF, Barragán-Campos HM, Ilarraza H, Iturralde P, Ávila-Casado MC, Oseguera J Cardiac involvement in Kearns-Sayre Syndrome. Revista Española de Cardiología (English Edition).

  21. Vogel H (2001) Mitochondrial myopathies and the role of the pathologist in the molecular era. J Neuropathol Exp Neurol 60:217–227

    Article  PubMed  CAS  Google Scholar 

  22. Atkinson JB, Johnson MD, Bouldin TW, Whetsell WO (2009) CHAPTER 53 - Muscle and Nerve Biopsy. In: Weidner N, Cote RJ, Suster S, Weiss LM, editors. Modern Surgical Pathology (Second Edition). Published: W.B. Saunders, Place, pp. 2069–2088

  23. Mayorga L, Laurito SR, Loos MA, Eiroa HD, de Pinho S, Lubieniecki F et al (2016) Mitochondrial DNA deletions detected by multiplex ligation-dependent probe amplification. Mitochond DNA A: DNA Mapp Seq Anal 27:2864–2867

    Article  CAS  Google Scholar 

  24. Tońska K, Piekutowska-Abramczuk D, Kaliszewska M, Kowalski P, Tańska A, Bartnik E et al (2012) Molecular investigations of mitochondrial deletions: evaluating the usefulness of different genetic tests. Gene 506:161–165

    Article  PubMed  Google Scholar 

  25. Grigalionienė K, Burnytė B, Balkelienė D, Ambrozaitytė L, Utkus A (2023) Kearns-Sayre syndrome case. Novel 5, 9 kb mtDNA deletion. Mol Genet Genomic Med 11:e2059

    Article  PubMed  Google Scholar 

  26. Allen RJ, DiMauro S, Coulter DL, Papadimitriou A, Rothenberg SP (1983) Kearns-Sayre syndrome with reduced plasma and cerebrospinal fluid folate. Ann Neurol 13:679–682

    Article  PubMed  CAS  Google Scholar 

  27. Yorifuji S, Ogasahara S, Takahashi M, Tarui S (1985) Decreased activities in mitochondrial inner membrane electron transport system in muscle from patients with Kearns-Sayre syndrome. J Neurol Sci 71:65–75

    Article  PubMed  CAS  Google Scholar 

  28. Bresolin N, Moggio M, Bet L, Gallanti A, Prelle A, Nobile-Orazio E et al (1987) Progressive cytochrome c oxidase deficiency in a case of earns-sayre syndrome: morphological, immunological, and biochemical studies in muscle biopsies and autopsy tissues. Ann Neurol 21:564–572

    Article  PubMed  CAS  Google Scholar 

  29. del Mar Amador M, Colsch B, Lamari F, Jardel C, Ichou F, Rastetter A et al (2018) Targeted versus untargeted omics—the CAFSA story. J Inherit Metab Dis 41:447–456

    Article  PubMed  Google Scholar 

  30. Salvador CL, Oppebøen M, Vassli AØ, Pfeiffer HCV, Varhaug KN, Elgstøen KBP et al (2023) Increased sphingomyelin and free sialic acid in Cerebrospinal Fluid of Kearns-Sayre Syndrome. New Findings Using Untargeted Metabolomics. Pediatr Neurol

  31. Finsterer J, Winklehner M, Stöllberger C, Hummel T (2020) Unusual Phenotype and Disease Trajectory in Kearns–Sayre Syndrome. Case Rep Neurol Med. 2020:7368527

  32. Chertkof J, Hufnagel RB, Blain D, Gropman AL, Brooks BP (2020) Retinoschisis associated with Kearns-Sayre syndrome. Ophthalmic Genet 41:497–500

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nadeem A, Umar S, Sohaib M, Javaid M (2023) Ophthalmoplegia, pigmentary retinopathy, and abnormal cardiac conduction: a rare case of Kearns-Sayre syndrome. Eneurologicalsci 30:100448

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lax NZ, Campbell GR, Reeve AK, Ohno N, Zambonin J, Blakely EL et al (2012) Loss of myelin-associated glycoprotein in kearns-sayre syndrome. Arch Neurol 69:490–499

    Article  PubMed  PubMed Central  Google Scholar 

  35. Berio A, Piazzi A, Traverso CE (2017) Kearns-Sayre syndrome with facial and white matter extensive involvement: a (mitochondrial and nuclear gene related?) Neurocristopathy? Pediatr Med Chir. 39

  36. Pohjoismäki JL, Goffart S, Tyynismaa H, Willcox S, Ide T, Kang D et al (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem 284:21446–21457

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  38. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  PubMed  CAS  Google Scholar 

  39. Mokranjac D, Neupert W (2009) Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. BBA-Mol Cell Res 1793:33–41

    CAS  Google Scholar 

  40. Nissanka N, Moraes CT (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592:728–742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tang Y, Schon EA, Wilichowski E, Vazquez-Memije ME, Davidson E, King MP (2000) Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol Biol Cell 11:1471–1485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stefano GB, Kream RM (2016) Mitochondrial DNA heteroplasmy in human health and disease. Biomed Rep 4:259–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pitceathly R, Rahman S, Hanna M (2012) Single deletions in mitochondrial DNA–molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul Disord 22:577–586

    Article  PubMed  CAS  Google Scholar 

  44. Poulton J, Morten KJ, Weber K, Brown GK, Bindoff L (1994) Are duplications of mitochondrial DNA characteristic of Kearns—Sayre syndrome? Hum Mol Genet 3:947–951

    Article  PubMed  CAS  Google Scholar 

  45. Poulton J, Morten KJ, Marchington D, Weber K, Brown GK, Rötig A et al (1995) Duplications of mitochondrial DNA in Kearns–Sayre syndrome. Muscle Nerve 18:S154–S158

    Article  Google Scholar 

  46. Kleinle S, Wiesmann U, Superti-Furga A, Krähenbühl S, Boltshauser E, Reichen J et al (1997) Detection and characterization of mitochondrial DNA rearrangements in Pearson and Kearns-Sayre syndromes by long PCR. Hum Genet 100:643–650

    Article  PubMed  CAS  Google Scholar 

  47. Sabella-Jiménez V, Otero‐Herrera C, Silvera‐Redondo C, Garavito‐Galofre P (2020) Mitochondrial DNA deletion and duplication in Kearns–Sayre Syndrome (KSS) with initial presentation as Pearson Marrow‐Pancreas Syndrome (PMPS): two case reports in Barranquilla, Colombia. Mol Genet Genomic Med 8:e1509

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  49. Pitceathly RD, Fassone E, Taanman J-W, Sadowski M, Fratter C, Mudanohwo EE et al (2011) Kearns–Sayre syndrome caused by defective R1/p53R2 assembly. J Med Genet 48:610–617

    Article  PubMed  CAS  Google Scholar 

  50. Luo S, Valencia CA, Zhang J, Lee N-C, Slone J, Gui B et al (2018) Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci USA 115:13039–13044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rius R, Cowley MJ, Riley L, Puttick C, Thorburn DR, Christodoulou J (2019) Biparental inheritance of mitochondrial DNA in humans is not a common phenomenon. Genet Med 21:2823–2826

    Article  PubMed  CAS  Google Scholar 

  52. Alemi M, Prigione A, Wong A, Schoenfeld R, DiMauro S, Hirano M et al (2007) Mitochondrial DNA deletions inhibit proteasomal activity and stimulate an autophagic transcript. Free Radic Biol Med 42:32–43

    Article  PubMed  CAS  Google Scholar 

  53. Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA (1995) Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 57:239

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, Comi GP et al (2000) Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289:782–785

    Article  PubMed  CAS  Google Scholar 

  55. Spelbrink JN, Li F-Y, Tiranti V, Nikali K, Yuan Q-P, Tariq M et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231

    Article  PubMed  CAS  Google Scholar 

  56. Van Goethem G, Dermaut B, Löfgren A, Martin J-J, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28:211–212

    Article  PubMed  Google Scholar 

  57. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329

    Article  PubMed  CAS  Google Scholar 

  58. Simonetti S, Chen X, DiMauro S, Schon EA (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180:113–122

    Article  PubMed  CAS  Google Scholar 

  59. Cortopassi GA, Shibata D, Soong N, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC (1991) Hypoxemia is associated with mitochondrial DNA damage and gene induction: implications for cardiac disease. JAMA 266:1812–1816

    Article  PubMed  CAS  Google Scholar 

  61. Moraes C, Sciacco M, Ricci E, Tengan C, Hao H, Bonilla E et al (1995) Phenotype–genotype correlations in skeletal muscle of patients with mtDNA deletions. Muscle Nerve 18:S150–S153

    Article  Google Scholar 

  62. Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, Schon E et al (1988) Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38:1339–1339

    Article  PubMed  CAS  Google Scholar 

  63. Vielhaber S, Kudin A, Schröder R, Elger C, Kunz W (2000) Muscle fibres: applications for the study of the metabolic consequences of enzyme deficiencies in skeletal muscle. Portland Press Ltd.

  64. Porteous WK, James AM, Sheard PW, Porteous CM, Packer MA, Hyslop SJ et al (1998) Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem 257:192–201

    Article  PubMed  CAS  Google Scholar 

  65. JOU MJ, PENG TI, WU HY, WEI YH (2005) Enhanced generation of mitochondrial reactive oxygen species in cybrids containing 4977-bp mitochondrial DNA deletion. Ann NY Acad Sci 1042:221–228

    Article  PubMed  CAS  Google Scholar 

  66. Brown GK, Squier MV (1996) Neuropathology and pathogenesis of mitochondrial diseases. J Inherit Metab Dis 19:553–572

    Article  PubMed  CAS  Google Scholar 

  67. Yazdani M (2015) Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro. Toxicol in Vitro 30:578–582

    Article  PubMed  CAS  Google Scholar 

  68. Gibson BW (2005) The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Int J Biochem Cell Biol 37:927–934

    Article  PubMed  CAS  Google Scholar 

  69. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Holloman CM, Wolfe LA, Gahl WA, Boerkoel CF (2013) Kearns-Sayre syndrome presenting as isolated growth failure. Case Rep. 2013:bcr2012007272

  71. DelCarlo M, Loeser RF (2006) Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-βI. Am J Physiol-Cell Physiol 290:C802–C811

    Article  PubMed  CAS  Google Scholar 

  72. Goldstein A, Falk MJ (2019) Mitochondrial DNA deletion syndromes

  73. López-Gallardo E, López-Pérez MJ, Montoya J, Ruiz-Pesini E (2009) CPEO and KSS differ in the percentage and location of the mtDNA deletion. Mitochondrion 9:314–317

    Article  PubMed  Google Scholar 

  74. Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S (1989) A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244:346–349

    Article  PubMed  CAS  Google Scholar 

  75. Rötig A, Cormier V, Koll F, Mize CE, Saudubray J-M, Veerman A et al (1991) Site-specific deletions of the mitochondrial genome in the Pearson marrow-pancreas syndrome. Genomics 10:502–504

    Article  PubMed  Google Scholar 

  76. Rötig A, Cormier V, Blanche S, Bonnefont J-P, Ledeist F, Romero N et al (1990) Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest 86:1601–1608

    Article  PubMed  PubMed Central  Google Scholar 

  77. Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF et al (1989) Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. Curr Ophthalmol Rep 320:1293–1299

    CAS  Google Scholar 

  78. Zeviani M, Gallera C, Pannacci M, Uziel G, Prelle A, Servidei S et al (1990) Tissue distribution and transmission of mitochondrial DNA deletions in mitochondrial myopathies. Ann Neurol 28:94–97

    Article  PubMed  CAS  Google Scholar 

  79. Rose MR (1998) Mitochondrial myopathies: genetic mechanisms. Arch Neurol 55:17–24

    Article  PubMed  CAS  Google Scholar 

  80. Yoshimi A, Ishikawa K, Niemeyer C, Grünert SC (2022) Pearson syndrome: a multisystem mitochondrial disease with bone marrow failure. Orphanet J Rare Dis 17:1–11

    Article  Google Scholar 

  81. Larsson N-g, Holme E, Kristiansson B, Oldfors A, Tulinius M (1990) Progressive increase of the mutated mitochondrial DNA fraction in Kearns-Sayre syndrome. Pediatr Res 28:131–136

    Article  PubMed  CAS  Google Scholar 

  82. Saldaña-Martínez A, de Lourdes Muñoz M, Pérez-Ramírez G, Montiel-Sosa JF, Montoya J, Emperador S et al (2019) Whole sequence of the mitochondrial DNA genome of Kearns Sayre Syndrome patients: identification of deletions and variants. Gene 688:171–181

    Article  PubMed  Google Scholar 

  83. Shanske S, Moraes C, Lombes A, Miranda A, Bonilla E, Lewis P et al (1990) Widespread tissue distribution of mitochondrial DNA deletions in Kearns-Sayre syndrome. Neurology 40:24–24

    Article  PubMed  CAS  Google Scholar 

  84. Obermaier-Kusser B, Müller-Höcker J, Nelson I, Lestienne P, Enter C, Riedele T et al (1990) Different copy numbers of apparently identically deleted mitochondrial DNA in tissues from a patient with Kearns-Sayre syndrome detected by PCR. Biochem Biophys Res Commun 169:1007–1015

    Article  PubMed  CAS  Google Scholar 

  85. Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M et al (1995) Cardiac involvement in mitochondrial diseases: a study on 17 patients with documented mitochondrial DNA defects. Circulation 91:955–961

    Article  PubMed  CAS  Google Scholar 

  86. Poulton J, Deadman ME, Bindoff L, Morten K, Land J, Brown G (1993) Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Hum Mol Genet 2:23–30

    Article  PubMed  CAS  Google Scholar 

  87. Stefano GB, Kream RM (2022) Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 neurological disorders. Cell Mol Neurobiol 42:99–107

    Article  PubMed  CAS  Google Scholar 

  88. Ruiz-Pesini E, Lott M, Procaccio V, Poole J, Brandon M, Mishmar D et al (2010) MITOMAP: a human mitochondrial genome database.

  89. Zhu Q, Chen C, Yao J (2022) Kearns–Sayre syndrome with a novel large-scale deletion: a case report. BMC Ophthalmol 22:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. James AM, Sheard PW, Wei YH, Murphy MP (1999) Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations: implications for neurodegenerative and mitochondrial DNA diseases. Eur J Biochem 259:462–469

    Article  PubMed  CAS  Google Scholar 

  91. Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen Z-P, Witters LA (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24:22–25

    Article  PubMed  CAS  Google Scholar 

  92. Szalardy L, Zadori D, Plangar I, Vecsei L, Weydt P, Ludolph AC et al (2013) Neuropathology of partial PGC-1α deficiency recapitulates features of mitochondrial encephalopathies but not of neurodegenerative diseases. Neurodegenerative Dis 12:177–188

    Article  CAS  Google Scholar 

  93. Duncan ID, Radcliff AB (2016) Inherited and acquired disorders of myelin: the underlying myelin pathology. Exp Neurol 283:452–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tanji K, DiMauro S, Bonilla E (1999) Disconnection of cerebellar Purkinje cells in Kearns-Sayre syndrome. J Neurol Sci 166:64–70

    Article  PubMed  CAS  Google Scholar 

  95. Simões-Costa M, Bronner ME (2013) Insights into neural crest development and evolution from genomic analysis. Genome Res 23:1069–1080

    Article  PubMed  PubMed Central  Google Scholar 

  96. Inoue K, Tanabe Y, Lupski JR (1999) Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 46:313–318

    Article  PubMed  CAS  Google Scholar 

  97. Kontou M, Weidemann W, Bork K, Horstkorte R (2009) Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells. Biol Chem. 390

  98. Zhang L, Wei T-T, Li Y, Li J, Fan Y, Huang F-Q et al (2018) Functional metabolomics characterizes a key role for N-acetylneuraminic acid in coronary artery diseases. Circulation 137:1374–1390

    Article  PubMed  CAS  Google Scholar 

  99. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314

    Article  PubMed  PubMed Central  Google Scholar 

  100. Meske V, Albert F, Richter D, Schwarze J, Ohm T (2003) Blockade of HMG-CoA reductase activity causes changes in microtubule‐stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer’s disease. Eur J Neurosci 17:93–102

    Article  PubMed  CAS  Google Scholar 

  101. Hamano T, Yen S-H, Gendron T, Ko L-w, Kuriyama M (2012) Pitavastatin decreases tau levels via the inactivation of Rho/ROCK. Neurobiol Aging 33:2306–2320

    Article  PubMed  CAS  Google Scholar 

  102. Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Merkle RK, Gong C-X (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett 512:101–106

    Article  PubMed  CAS  Google Scholar 

  103. Obeid R, Kasoha M, Knapp J-P, Kostopoulos P, Becker G, Fassbender K et al (2007) Folate and methylation status in relation to phosphorylated tau protein (181P) and β-amyloid (1–42) in cerebrospinal fluid. Clin Chem 53:1129–1136

    Article  PubMed  CAS  Google Scholar 

  104. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  PubMed  CAS  Google Scholar 

  105. Quntanilla RA, Tapia-Monsalves C (2020) The role of mitochondrial impairment in Alzheimer’s Disease Neurodegeneration: the tau connection. Curr Neuropharmacol 18:1076–1091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Betts J, Lightowlers RN, Turnbull DM (2004) Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 29:505–511

    Article  PubMed  CAS  Google Scholar 

  107. Filosto M, Tomelleri G, Tonin P, Scarpelli M, Vattemi G, Rizzuto N et al (2007) Neuropathology of mitochondrial diseases. Biosci Rep 27:23–30

    Article  PubMed  CAS  Google Scholar 

  108. Tanji K, Kunimatsu T, Vu TH, Bonilla E (2001) Neuropathological features of mitochondrial disorders. Semin Cell Dev Biol 12:429–439

    Article  PubMed  CAS  Google Scholar 

  109. Moroni I, Bugiani M, Bizzi A, Castelli G, Lamantea E, Uziel G (2002) Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics 33:79–85

    Article  PubMed  CAS  Google Scholar 

  110. Oldfors A, Fyhr I-M, Holme E, Larsson N-G, Tulinius M (1990) Neuropathology in Kearns-Sayre syndrome. Acta Neuropathol 80:541–546

    Article  PubMed  CAS  Google Scholar 

  111. Sparaco M, Bonilla E, DiMauro S, Powers JM (1993) Neuropathology of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J Neuropathol Exp Neurol 52:1–10

    Article  PubMed  CAS  Google Scholar 

  112. Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. Am J Neuroradiol 21:1099–1109

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Raine CS, Cannella B, Hauser SL, Genain CP (1999) Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 46:144–160

    Article  PubMed  CAS  Google Scholar 

  114. Kennedy PG, George W, Yu X (2022) The possible role of neural cell apoptosis in multiple sclerosis. Int J Mol Sci 23:7584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. George KS, Wu S (2012) Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol 259:311–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lee CM, Reddy EP (1999) The v-myc oncogene. Oncogene 18:2997–3003

    Article  PubMed  CAS  Google Scholar 

  117. Gump JM, Thorburn A (2011) Autophagy and apoptosis: what is the connection? Trends Cell Biol 21:387–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92

    Article  PubMed  CAS  Google Scholar 

  119. Kirkinezos IG, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12:449–457

    Article  PubMed  CAS  Google Scholar 

  120. Redza-Dutordoir M, Averill-Bates DA (2021) Interactions between reactive oxygen species and autophagy: special issue: death mechanisms in cellular homeostasis. BBA-Mol Cell Res 1868:119041

    CAS  Google Scholar 

  121. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. BBA-Mol Cell Res 1863:2977–2992

    CAS  Google Scholar 

  122. Prigione A, Cortopassi G (2007) Mitochondrial DNA deletions induce the adenosine monophosphate-activated protein kinase energy stress pathway and result in decreased secretion of some proteins. Aging Cell 6:619–630

    Article  PubMed  CAS  Google Scholar 

  123. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  124. Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P et al (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hyland K, Smith I, Bottiglieri T, Perry J, Wendel U, Clayton P et al (1988) Demyelination and decreased S-adenosylmethionine in 5.10‐methylenetetrahydrofolate reductase deficiency. Neurology 38:459–459

    Article  PubMed  CAS  Google Scholar 

  126. Prolo LM, Vogel H, Reimer RJ (2009) The lysosomal sialic acid transporter sialin is required for normal CNS myelination. J Neurosci 29:15355–15365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Collins BE, Yang LJ-S, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A et al (1997) Sialic acid specificity of myelin-associated glycoprotein binding. J Biol Chem 272:1248–1255

    Article  PubMed  CAS  Google Scholar 

  128. Giussani P, Prinetti A, Tringali C (2021) The role of sphingolipids in myelination and myelin stability and their involvement in childhood and adult demyelinating disorders. J Neurochem 156:403–414

    Article  PubMed  CAS  Google Scholar 

  129. Mandelkow E-M, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect med 2:a006247

    Article  PubMed  PubMed Central  Google Scholar 

  130. Guo W, Dittlau KS, Van Den Bosch L (2020) Axonal transport defects and neurodegeneration: molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 99:133–150

    Article  PubMed  CAS  Google Scholar 

  131. Lackner LL (2013) Determining the shape and cellular distribution of mitochondria: the integration of multiple activities. Curr Opin Cell Biol 25:471–476

    Article  PubMed  CAS  Google Scholar 

  132. Kuznetsov AV, Margreiter R (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10:1911–1929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Heiman P, Mohsen A-W, Karunanidhi A, St Croix C, Watkins S, Koppes E et al (2022) Mitochondrial dysfunction associated with TANGO2 deficiency. Sci Rep 12:3045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Madan S, Uttekar B, Chowdhary S, Rikhy R (2022) Mitochondria lead the way: mitochondrial dynamics and function in cellular movements in development and disease. Front Cell Dev Biol 9:3810

    Article  Google Scholar 

  135. Komen J, Thorburn D (2014) Turn up the power–pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 171:1818–1836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Hardwick JP (2014) Does Mitochondrial Size or Number Play a Role in Metabolic Syndrome? GCT. 1

  137. Bresolin N, Moggio M, Bet L, Gallanti A, Prelle A, Nobile-Orazio E et al (1987) Progressive cytochrome c oxidase deficiency in a case of earns‐sayre syndrome: morphological, immunological, and biochemical studies in muscle biopsies and autopsy tissues. Ann Neurol 21:564–572

    Article  PubMed  CAS  Google Scholar 

  138. Guenthard J, Wyler F, Fowler B, Baumgartner R (1995) Cardiomyopathy in respiratory chain disorders. Arch Dis Child 72:223–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Reichmann H, Gold R, Meurers B, Naumann M, Seibel P, Walter U et al (1993) Progression of myopathology in Kearns-Sayre syndrome: a morphological follow-up study. Acta Neuropathol 85:679–681

    Article  PubMed  CAS  Google Scholar 

  140. Ball EH, Singer S (1982) Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci USA 79:123–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Morris R, Hollenbeck P (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326

    Article  PubMed  CAS  Google Scholar 

  142. Kandel J, Picard M, Wallace DC, Eckmann DM (2017) Mitochondrial DNA 3243A > G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics. J R Soc Interface 14:20170071

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lightowlers RN, Chrzanowska-Lightowlers ZM, Russell OM (2020) Mitochondrial transplantation—A possible therapeutic for mitochondrial dysfunction? Mitochondrial transfer is a potential cure for many diseases but proof of efficacy and safety is still lacking. EMBO Rep 21:e50964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Russell OM, Gorman GS, Lightowlers RN, Turnbull DM (2020) Mitochondrial diseases: hope for the future. Cell 181:168–188

    Article  PubMed  CAS  Google Scholar 

  145. Jacoby E, Ben Yakir-Blumkin M, Blumenfeld-Kan S, Brody Y, Meir A, Melamed-Book N et al (2021) Mitochondrial augmentation of CD34 + cells from healthy donors and patients with mitochondrial DNA disorders confers functional benefit. NPJ Regenerative Medicine 6:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Srivastava A, Sequiera GL, Alagarsamy KN, Rockman-Greenberg C, Dhingra S (2021) Generation of human induced pluripotent stem cell (hiPSC) line UOMi005-A from PBMCs of a patient with Kearns-Sayre syndrome. Stem Cell Res 53:102283

    Article  PubMed  CAS  Google Scholar 

  147. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL et al (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77:753–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Wang X, Zang J, Yang Y, Lu S, Guan Q, Ye D et al (2021) Transplanted human oligodendrocyte progenitor cells restore neurobehavioral deficits in a rat model of preterm white matter injury. Front Neurol 12:749244

    Article  PubMed  PubMed Central  Google Scholar 

  149. Li W, He T, Shi R, Song Y, Wang L, Zhang Z et al (2021) Oligodendrocyte precursor cells transplantation improves stroke recovery via oligodendrogenesis, neurite growth and synaptogenesis. Aging Dis 12:2096

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hastings N, Kuan W-L, Osborne A, Kotter MR (2022) Therapeutic potential of astrocyte transplantation. Cell Transpl 31:09636897221105499

    Article  Google Scholar 

  151. Lee H-G, Wheeler MA, Quintana FJ (2022) Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 21:339–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Indo HP, Davidson M, Yen H-C, Suenaga S, Tomita K, Nishii T et al (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118

    Article  PubMed  CAS  Google Scholar 

  153. NIH (2020) Fact sheet for health professionals: Dietary supplements for primary mitochondrial disorders. National Institutes of Health, USA. National Institutes of Health Office of Dietary Supplements Available online https://odsodnihgov/factsheets/PrimaryMitochondrialDisorders-HealthProfessional/#ALAcoQcreatine

  154. Dailah HG (2022) Potential of therapeutic small molecules in apoptosis regulation in the treatment of neurodegenerative diseases: an updated review. Molecules 27:7207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Deigner H-P, Haberkorn U, Kinscherf R (2000) Apoptosis modulators in the therapy of neurodegenerative diseases. Expert Opin Investig Drugs 9:747–764

    Article  PubMed  CAS  Google Scholar 

  156. Tatton W, Olanow C (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta Bioenerg 1410:195–213

    Article  CAS  Google Scholar 

  157. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375

    Article  PubMed  CAS  Google Scholar 

  158. Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Demillard LJ, Nikanfar M, Nourazarian A et al (2021) Targeting autophagy in neurodegenerative diseases: from molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 48:943–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Park H, Kang J-H, Lee S (2020) Autophagy in neurodegenerative diseases: a hunter for aggregates. Int J Mol Sci 21:3369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Scrivo A, Bourdenx M, Pampliega O, Cuervo AM (2018) Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 17:802–815

    Article  PubMed  PubMed Central  Google Scholar 

  161. Vidal RL, Matus S, Bargsted L, Hetz C (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35:583–591

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mazyar Yazdani.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, M. Cellular and Molecular Responses to Mitochondrial DNA Deletions in Kearns-Sayre Syndrome: Some Underlying Mechanisms. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03938-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03938-7

Keywords

Navigation