Skip to main content

Abstract

The highly conserved mitochondrial DNA (mtDNA) is particularly susceptible to mutations due to its close proximity to respiratory chain, inheritance at birth, lack of histones in structure, as well as ineffective repair mechanisms. Oxidative stress-induced mtDNA damage and mutations are most profound since the mitochondria are constantly exposed to reactive oxygen species generated by electron transport chain. Dysfunctional mitochondria which are commonly observed in aging or diseases, can exacerbate oxidative stress thereby contributing to disease development. MtDNA encompasses essential genes that encode ribosomal RNAs, transfer RNAs, and several respiratory protein complexes. Thus, mutation in mtDNA impairs mitochondrial functions and results in cellular alterations such as disrupted protein synthesis and decreased ATP bioenergetics. The accumulation of mutated mtDNA throughout lifetime and the subsequent mitochondrial dysfunction are implicated in neurodegeneration and multiple mtDNA-related diseases including myoclonic epilepsy with ragged red fibers (MERRF), Leigh syndrome (LS), and Leber’s hereditary optic neuropathy (LHON). Although the management of these mitochondrial diseases remains challenging, the prevention of maternal transmission of mtDNA mutations can be an essential approach. Despite the negative effects caused by mtDNA damage, high mtDNA mutation rates contribute to the genetic polymorphism in the population, which is likely related to human evolution and migration. In this chapter, we will focus on discussing the structure and function of mtDNA, potential sources leading to mtDNA defect, common mtDNA-related diseases, as well as potential treatment for mtDNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolstenholme, D.R.: Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141, 173–216 (1992)

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, S., et al.: Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981)

    Article  CAS  PubMed  Google Scholar 

  3. Iborra, F.J., Kimura, H., Cook, P.R.: The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9 (2004). doi:10.1186/1741-7007-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sutovsky, P., et al.: Ubiquitin tag for sperm mitochondria. Nature 402, 371–372 (1999). doi:10.1038/46466

    Article  CAS  PubMed  Google Scholar 

  5. He, Y., et al.: Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610–614 (2010). doi:10.1038/nature08802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallace, D.C., Chalkia, D.: Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspect. Med. 3, a021220 (2013)

    Article  Google Scholar 

  7. Tuppen, H.A., Blakely, E.L., Turnbull, D.M., Taylor, R.W.: Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 1797, 113–128 (2010). doi:10.1016/j.bbabio.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  8. Turnbull, H.E., Lax, N.Z., Diodato, D., Ansorge, O., Turnbull, D.M.: The mitochondrial brain: from mitochondrial genome to neurodegeneration. Biochim. Biophys. Acta 1802, 111–121 (2010). doi:10.1016/j.bbadis.2009.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clayton, D.A.: Transcription of the mammalian mitochondrial genome. Annu. Rev. Biochem. 53, 573–594 (1984). doi:10.1146/annurev.bi.53.070184.003041

    Article  CAS  PubMed  Google Scholar 

  10. Yakes, F.M., Van Houten, B.: Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 94, 514–519 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tann, A.W., et al.: Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5′-EXO/endonuclease) in their repair. J. Biol. Chem. 286, 31975–31983 (2011). doi:10.1074/jbc.M110.215715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang, D., Kim, S.H., Hamasaki, N.: Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion 7, 39–44 (2007). doi:10.1016/j.mito.2006.11.017

    Article  CAS  PubMed  Google Scholar 

  13. Larsson, N.G., et al.: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998). doi:10.1038/ng0398-231

    Article  CAS  PubMed  Google Scholar 

  14. Robin, E.D., Wong, R.: Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136, 507–513 (1988). doi:10.1002/jcp.1041360316

    Article  CAS  PubMed  Google Scholar 

  15. Satoh, M., Kuroiwa, T.: Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp. Cell Res. 196, 137–140 (1991)

    Article  CAS  PubMed  Google Scholar 

  16. Brown, W.M., George Jr., M., Wilson, A.C.: Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. U. S. A. 76, 1967–1971 (1979)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown, W.M.: Mechanisms of evolution in animal mitochondrial DNA. Ann. N. Y. Acad. Sci. 361, 119–134 (1981)

    Article  CAS  PubMed  Google Scholar 

  18. Dyall, S.D., Brown, M.T., Johnson, P.J.: Ancient invasions: from endosymbionts to organelles. Science 304, 253–257 (2004). doi:10.1126/science.1094884

    Article  CAS  PubMed  Google Scholar 

  19. Saccone, C., Pesole, G., Sbisa, E.: The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33, 83–91 (1991)

    Article  CAS  PubMed  Google Scholar 

  20. Chang, D.D., Clayton, D.A.: Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36, 635–643 (1984)

    Article  CAS  PubMed  Google Scholar 

  21. Chinnery, P.F., Samuels, D.C., Elson, J., Turnbull, D.M.: Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360, 1323–1325 (2002). doi:10.1016/S0140-6736(02)11310-9

    Article  CAS  PubMed  Google Scholar 

  22. Linnane, A.W., Marzuki, S., Ozawa, T., Tanaka, M.: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1, 642–645 (1989)

    Article  CAS  PubMed  Google Scholar 

  23. Richter, C., Park, J.W., Ames, B.N.: Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. U. S. A. 85, 6465–6467 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Turrens, J.F.: Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003). doi:10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hemnani, T., Parihar, M.S.: Reactive oxygen species and oxidative DNA damage. Indian J. Physiol. Pharmacol. 42, 440–452 (1998)

    CAS  PubMed  Google Scholar 

  26. Wei, Y.H., Lee, H.C.: Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. 227, 671–682 (2002)

    CAS  Google Scholar 

  27. Croteau, D.L., Bohr, V.A.: Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 272, 25409–25412 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. Suematsu, N., et al.: Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107, 1418–1423 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Wang, C.H., Wu, S.B., Wu, Y.T., Wei, Y.H.: Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp. Biol. Med. 238, 450–460 (2013). doi:10.1177/1535370213493069

    Article  Google Scholar 

  30. Lin, M.T., Beal, M.F.: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006). doi:10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  31. Kujoth, G.C., et al.: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005). doi:10.1126/science.1112125

    Article  CAS  PubMed  Google Scholar 

  32. Cline, S.D.: Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim. Biophys. Acta 1819, 979–991 (2012). doi:10.1016/j.bbagrm.2012.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, P., Demple, B.: DNA repair in mammalian mitochondria: much more than we thought? Environ. Mol. Mutagen. 51, 417–426 (2010). doi:10.1002/em.20576

    CAS  PubMed  Google Scholar 

  34. Alam, T.I., et al.: Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 31, 1640–1645 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Larsen, N.B., Rasmussen, M., Rasmussen, L.J.: Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5, 89–108 (2005). doi:10.1016/j.mito.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  36. Weissman, L., de Souza-Pinto, N.C., Stevnsner, T., Bohr, V.A.: DNA repair, mitochondria, and neurodegeneration. Neuroscience 145, 1318–1329 (2007). doi:10.1016/j.neuroscience.2006.08.061

    Article  CAS  PubMed  Google Scholar 

  37. Akbari, M., Visnes, T., Krokan, H.E., Otterlei, M.: Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair 7, 605–616 (2008). doi:10.1016/j.dnarep.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Kaguni, L.S.: DNA polymerase gamma, the mitochondrial replicase. Annu. Rev. Biochem. 73, 293–320 (2004). doi:10.1146/annurev.biochem.72.121801.161455

    Article  CAS  PubMed  Google Scholar 

  39. Graziewicz, M.A., Day, B.J., Copeland, W.C.: The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 30, 2817–2824 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lakshmipathy, U., Campbell, C.: Antisense-mediated decrease in DNA ligase III expression results in reduced mitochondrial DNA integrity. Nucleic Acids Res. 29, 668–676 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dzierzbicki, P., Koprowski, P., Fikus, M.U., Malc, E., Ciesla, Z.: Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway. DNA Repair 3, 403–411 (2004). doi:10.1016/j.dnarep.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  42. Mandavilli, B.S., Santos, J.H., Van Houten, B.: Mitochondrial DNA repair and aging. Mutat. Res. 509, 127–151 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. McFarland, R., Taylor, R.W., Turnbull, D.M.: The neurology of mitochondrial DNA disease. Lancet Neurol. 1, 343–351 (2002)

    Article  PubMed  Google Scholar 

  44. Taylor, R.W., Turnbull, D.M.: Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402 (2005). doi:10.1038/nrg1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khrapko, K.: Two ways to make an mtDNA bottleneck. Nat. Genet. 40, 134–135 (2008). doi:10.1038/ng0208-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Campisi, J., d’Adda di Fagagna, F.: Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007). doi:10.1038/nrm2233

    Article  CAS  PubMed  Google Scholar 

  47. Richter, C.: Oxidative damage to mitochondrial DNA and its relationship to ageing. Int. J. Biochem. Cell Biol. 27, 647–653 (1995)

    Article  CAS  PubMed  Google Scholar 

  48. Breuer, M.E., et al.: The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol. Dis. 51, 27–34 (2013). doi:10.1016/j.nbd.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  49. DiMauro, S., Schon, E.A.: Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31, 91–123 (2008). doi:10.1146/annurev.neuro.30.051606.094302

    Article  CAS  PubMed  Google Scholar 

  50. Choksi, K.B., Nuss, J.E., Boylston, W.H., Rabek, J.P., Papaconstantinou, J.: Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes. Free Radic. Biol. Med. 43, 1423–1438 (2007). doi:10.1016/j.freeradbiomed.2007.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taanman, J.W.: The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta 1410, 103–123 (1999)

    Article  CAS  PubMed  Google Scholar 

  52. McFarland, R., Taylor, R.W., Turnbull, D.M.: A neurological perspective on mitochondrial disease. Lancet Neurol. 9, 829–840 (2010). doi:10.1016/S1474-4422(10)70116-2

    Article  CAS  PubMed  Google Scholar 

  53. Zuo, L., Motherwell, M.S.: The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 532, 18–23 (2013). doi:10.1016/j.gene.2013.07.085

    Article  CAS  PubMed  Google Scholar 

  54. Cortopassi, G., et al.: Mitochondrial disease activates transcripts of the unfolded protein response and cell cycle and inhibits vesicular secretion and oligodendrocyte-specific transcripts. Mitochondrion 6, 161–175 (2006). doi:10.1016/j.mito.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  55. Cha, M.Y., Kim, D.K., Mook-Jung, I.: The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp. Mol. Med. 47, e150 (2015). doi:10.1038/emm.2014.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pellegrino, M.W., Nargund, A.M., Haynes, C.M.: Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta 1833, 410–416 (2013). doi:10.1016/j.bbamcr.2012.02.019

    Article  CAS  PubMed  Google Scholar 

  57. Dimitriadis, K., et al.: Leber’s hereditary optic neuropathy with late disease onset: clinical and molecular characteristics of 20 patients. Otphanet J. Rare Dis. 9, 158 (2014). doi:10.1186/s13023-014-0158-9

    Article  Google Scholar 

  58. Kirkman, M.A., et al.: Gene-environment interactions in Leber hereditary optic neuropathy. Brain 132, 2317–2326 (2009). doi:10.1093/brain/awp158

    Article  PubMed  PubMed Central  Google Scholar 

  59. Simon, D.K., et al.: Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease. Neurobiol. Aging 25, 71–81 (2004)

    Article  CAS  PubMed  Google Scholar 

  60. Yan, M.H., Wang, X., Zhu, X.: Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62, 90–101 (2013). doi:10.1016/j.freeradbiomed.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  61. Bender, A., et al.: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006). doi:10.1038/Ng1769

    Article  CAS  PubMed  Google Scholar 

  62. Exner, N., Lutz, A.K., Haass, C., Winklhofer, K.F.: Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062 (2012). doi:10.1038/emboj.2012.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cottrell, D.A., Blakely, E.L., Johnson, M.A., Ince, P.G., Turnbull, D.M.: Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57, 260–264 (2001)

    Article  CAS  PubMed  Google Scholar 

  64. Parikh, S., et al.: Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet. Med. (2014). doi:10.1038/gim.2014.177

    PubMed  PubMed Central  Google Scholar 

  65. Jeppesen, T.D., et al.: Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain 129, 3402–3412 (2006). doi:10.1093/brain/awl149

    Article  PubMed  Google Scholar 

  66. Safdar, A., et al.: Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc. Natl. Acad. Sci. U. S. A. 108, 4135–4140 (2011). doi:10.1073/pnas.1019581108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Manczak, M., et al.: Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J. Alzheimer’s Dis. 20(Suppl 2), S609–S631 (2010). doi:10.3233/JAD-2010-100564

    Google Scholar 

  68. Elliott, H.R., Samuels, D.C., Eden, J.A., Relton, C.L., Chinnery, P.F.: Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83, 254–260 (2008). doi:10.1016/j.ajhg.2008.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Alexander Ziegler for his assistance during the manuscript preparation.

Conflict of Interest 

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zuo Ph.D., F.A.C.S.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zuo, L., Zhou, T., Chuang, CC. (2016). The Consequences of Damaged Mitochondrial DNA. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_3

Download citation

Publish with us

Policies and ethics