Skip to main content

Advertisement

Log in

Unveiling Potential Neurotoxic Mechansisms: Pb-Induced Activation of CDK5-p25 Signaling Axis in Alzheimer’s Disease Development, Emphasizing CDK5 Inhibition and Formation of Toxic p25 Species

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder with an etiology influenced by various genetic and environmental factors. Heavy metals, such as lead (Pb), have been implicated in AD pathogenesis, but the underlying mechanisms remain poorly understood. This study investigates the potential neurodegenerative role of Pb and amyloid β peptides (1–40 and 25–35) via their interaction with cyclin-dependent kinase 5 (CDK5) and its activator, p25, in an attempt to unravel the molecular basis of Pb-induced neurotoxicity in neuronal cells. To this end, a CDK5 inhibitor was utilized to selectively inhibit CDK5 activity and investigate its impact on neurodegeneration. The results revealed that Pb exposure led to elevated Pb uptake (56.7% at 15 μM Pb) and disturbances in intracellular calcium (19.6% increase upon Pb treatment). The results revealed a significant decrease in total antioxidant capacity (by 88.6% upon Pb treatment) and also elevation in protein carbonylation (by 26.2% upon Pb and Aβp’s combination treatment), indicative of oxidative damage, suggesting an impaired cellular defence against oxidative stress and elevated DNA oxidative damage (178 pg/ml and 182 pg/ml of 8-OH-dG upon Pb and All treatment). Additionally, dysregulations in levels of calpain, p25-35 and CDK5 are observed and markers associated with antioxidant metabolism (phospho-Peroxiredoxin 1), DNA damage responses (phospho-ATM and phospho-p53), and nuclear membrane disruption (phospho-lamin A/C) were observed, supporting the role of Pb-induced CDK5-p25 signaling in AD pathogenesis. These findings shed light on the intricate molecular events underlying Pb-induced neurotoxicity and provide valuable insights into the mechanisms that contribute to AD development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Available upon request, it will be provided by the corresponding author.

References

  1. Ayyalasomayajula N, Suresh C (2018) Mechanistic comparison of current pharmacological treatments and novel phytochemicals to target amyloid peptides in Alzheimer’s and neurodegenerative diseases. Nutr Neurosci 21:682–694. https://doi.org/10.1080/1028415X.2017.1345425

    Article  CAS  PubMed  Google Scholar 

  2. Murumulla L, Bandaru LJM, Challa S (2023) Heavy metal mediated progressive degeneration and its noxious effects on brain microenvironment. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03778-x

  3. Balali-Mood M, Naseri K, Tahergorabi Z (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bandaru LJM, Ayyalasomayajula N, Murumulla L (2022) Defective mitophagy and induction of apoptosis by the depleted levels of PINK1 and Parkin in Pb and β-amyloid peptide induced toxicity. Toxicol Mech Methods 32:559–568. https://doi.org/10.1080/15376516.2022.2054749

    Article  CAS  PubMed  Google Scholar 

  5. Bandaru LJM, Ayyalasomayajula N, Murumulla L, Challa S (2022) Mechanisms associated with the dysregulation of mitochondrial function due to lead exposure and possible implications on the development of Alzheimer’s disease. Biometals an Int J role Met ions Biol Biochem Med 35:1–25. https://doi.org/10.1007/s10534-021-00360-7

    Article  CAS  Google Scholar 

  6. Joshi M, Joshi S, Khambete M, Degani M (2023) Role of calcium dysregulation in Alzheimer’s disease and its therapeutic implications. Chem Biol Drug Des 101:453–468. https://doi.org/10.1111/cbdd.14175

    Article  CAS  PubMed  Google Scholar 

  7. Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF (2023) Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int J Mol Sci 24. https://doi.org/10.3390/ijms24109067

  8. Xie J, Wu S, Szadowski H (2023) Developmental Pb exposure increases AD risk via altered intracellular Ca(2+) homeostasis in hiPSC-derived cortical neurons. J Biol Chem:105023. https://doi.org/10.1016/j.jbc.2023.105023

  9. Muyllaert D, Terwel D, Kremer A et al (2008) Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. Am J Pathol 172:470–485. https://doi.org/10.2353/ajpath.2008.070693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheung ZH, Ip NY (2012) Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22:169–175. https://doi.org/10.1016/j.tcb.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  11. Ayyalasomayajula N, Bandaru M, Dixit PK et al (2020) Inactivation of GAP-43 due to the depletion of cellular calcium by the Pb and amyloid peptide induced toxicity: an in vitro approach. Chem Biol Interact 316:108927. https://doi.org/10.1016/j.cbi.2019.108927

    Article  CAS  PubMed  Google Scholar 

  12. Neelima A, Rajanna A, Bhanuprakash RG et al (2017) Deleterious effects of combination of lead and β-Amyloid peptides in inducing apoptosis and altering cell cycle in human neuroblastoma cells. Interdiscip Toxicol 10:93–98. https://doi.org/10.1515/intox-2017-0015

    Article  CAS  PubMed  Google Scholar 

  13. Suresh C, Johnson J, Mohan R, Chetty CS (2012) Synergistic effects of amyloid peptides and lead on human neuroblastoma cells. Cell Mol Biol Lett 17:408–421. https://doi.org/10.2478/s11658-012-0018-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao Q, Dai Z, Zhang S et al (2020) Interaction of Sp1 and APP promoter elucidates a mechanism for Pb(2+) caused neurodegeneration. Arch Biochem Biophys 681:108265. https://doi.org/10.1016/j.abb.2020.108265

    Article  CAS  PubMed  Google Scholar 

  15. Metryka E, Kupnicka P, Kapczuk P et al (2021) Lead (Pb) Accumulation in human THP-1 monocytes/macrophages in vitro and the influence on cell apoptosis. Biol Trace Elem Res 199:955–967. https://doi.org/10.1007/s12011-020-02215-7

    Article  CAS  PubMed  Google Scholar 

  16. Cascella R, Cecchi C (2021) Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. Int J Mol Sci 22. https://doi.org/10.3390/ijms22094914

  17. Chen W-B, Wang Y-X, Wang H-G et al (2023) Role of TPEN in amyloid-β(25-35)-induced neuronal damage correlating with recovery of intracellular Zn(2+) and intracellular Ca(2+) overloading. Mol Neurobiol 60:4232–4245. https://doi.org/10.1007/s12035-023-03322-x

    Article  CAS  PubMed  Google Scholar 

  18. Chin JH, Tse FW, Harris K, Jhamandas JH (2006) Beta-amyloid enhances intracellular calcium rises mediated by repeated activation of intracellular calcium stores and nicotinic receptors in acutely dissociated rat basal forebrain neurons. Brain Cell Biol 35:173–186. https://doi.org/10.1007/s11068-007-9010-7

    Article  CAS  PubMed  Google Scholar 

  19. Feng C, Liu S, Zhou F et al (2019) Oxidative stress in the neurodegenerative brain following lifetime exposure to lead in rats: changes in lifespan profiles. Toxicology 411:101–109. https://doi.org/10.1016/j.tox.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  20. Peng J-C, Deng Y, Song H-X et al (2023) Protective effects of sodium para-aminosalicylic acid on lead and cadmium co-exposure in SH-SY5Y cells. Brain Sci 13. https://doi.org/10.3390/brainsci13030382

  21. Saeed K, Shah SA, Ullah R et al (2020) Quinovic acid impedes cholesterol dyshomeostasis, oxidative stress, and neurodegeneration in an amyloid-β-induced mouse model. Oxid Med Cell Longev 2020:9523758. https://doi.org/10.1155/2020/9523758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karapetyan G, Fereshetyan K, Harutyunyan H, Yenkoyan K (2022) The synergy of β amyloid 1-42 and oxidative stress in the development of Alzheimer’s disease-like neurodegeneration of hippocampal cells. Sci Rep 12:17883. https://doi.org/10.1038/s41598-022-22761-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bandaru LJM, Murumulla L, Challa S et al (2023) Exposure of combination of environmental pollutant, lead (Pb) and β-amyloid peptides causes mitochondrial dysfunction and oxidative stress in human neuronal cells. J Bioenerg Biomembr 55:79–89. https://doi.org/10.1007/s10863-023-09956-9

    Article  CAS  PubMed  Google Scholar 

  24. Mancini G, Martins WC, de Oliveira J et al (2020) Atorvastatin improves mitochondrial function and prevents oxidative stress in hippocampus following amyloid-β(1-40) intracerebroventricular administration in mice. Mol Neurobiol 57:4187–4201. https://doi.org/10.1007/s12035-020-02026-w

    Article  CAS  PubMed  Google Scholar 

  25. Bergkvist L, Du Z, Elovsson G et al (2020) Mapping pathogenic processes contributing to neurodegeneration in drosophila models of Alzheimer’s disease. FEBS Open Bio 10:338–350. https://doi.org/10.1002/2211-5463.12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Das M, Devi KP (2021) Dihydroactinidiolide regulates Nrf2/HO-1 expression and inhibits caspase-3/Bax pathway to protect SH-SY5Y human neuroblastoma cells from oxidative stress induced neuronal apoptosis. Neurotoxicology 84:53–63. https://doi.org/10.1016/j.neuro.2021.02.006

    Article  CAS  PubMed  Google Scholar 

  27. Mahaman YAR, Huang F, Kessete Afewerky H et al (2019) Involvement of calpain in the neuropathogenesis of Alzheimer’s disease. Med Res Rev 39:608–630. https://doi.org/10.1002/med.21534

    Article  PubMed  Google Scholar 

  28. Lee MS, Kwon YT, Li M et al (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364. https://doi.org/10.1038/35012636

    Article  CAS  PubMed  Google Scholar 

  29. Tanqueiro SR, Ramalho RM, Rodrigues TM et al (2018) Inhibition of NMDA receptors prevents the loss of BDNF function induced by amyloid β. Front Pharmacol 9:237. https://doi.org/10.3389/fphar.2018.00237

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kiss E, Groeneweg F, Gorgas K et al (2020) Amyloid-β fosters p35/CDK5 signaling contributing to changes of inhibitory synapses in early stages of cerebral amyloidosis. J Alzheimers Dis 74:1167–1187. https://doi.org/10.3233/JAD-190976

    Article  CAS  PubMed  Google Scholar 

  31. Ai J, Wang H, Chu P et al (2021) The neuroprotective effects of phosphocreatine on amyloid beta 25-35-induced differentiated neuronal cell death through inhibition of AKT /GSK-3β /Tau/APP /CDK5 pathways in vivo and vitro. Free Radic Biol Med 162:181–190. https://doi.org/10.1016/j.freeradbiomed.2020.10.003

    Article  CAS  PubMed  Google Scholar 

  32. Ding J-J, Zou R-X, He H-M et al (2018) Pb inhibits hippocampal synaptic transmission via cyclin-dependent kinase-5 dependent Synapsin 1 phosphorylation. Toxicol Lett 296:125–131. https://doi.org/10.1016/j.toxlet.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  33. Tuo Q-Z, Liuyang Z-Y, Lei P et al (2018) Zinc induces CDK5 activation and neuronal death through CDK5-Tyr15 phosphorylation in ischemic stroke. Cell Death Dis 9:870. https://doi.org/10.1038/s41419-018-0929-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun K-H, de Pablo Y, Vincent F, Shah K (2008) Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 107:265–278. https://doi.org/10.1111/j.1471-4159.2008.05616.x

    Article  CAS  PubMed  Google Scholar 

  35. Park J, Choi H, Min J-S et al (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132:687–702. https://doi.org/10.1111/jnc.12984

    Article  CAS  PubMed  Google Scholar 

  36. Qu D, Rashidian J, Mount MP et al (2007) Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron 55:37–52. https://doi.org/10.1016/j.neuron.2007.05.033

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Liu W, Szumlinski KK, Lew J (2012) p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Proc Natl Acad Sci U S A 109:20041–20046. https://doi.org/10.1073/pnas.1212914109

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Wang J, Huang W et al (2018) Nuclear nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun 9:3613. https://doi.org/10.1038/s41467-018-05808-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ayyalasomayajula N, Ajumeera R, Chellu CS, Challa S (2019) Mitigative effects of epigallocatechin gallate in terms of diminishing apoptosis and oxidative stress generated by the combination of lead and amyloid peptides in human neuronal cells. J Biochem Mol Toxicol 33:1–9. https://doi.org/10.1002/jbt.22393

    Article  CAS  Google Scholar 

  40. Shin BN, Kim DW, Kim IH et al (2019) Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 9:13032. https://doi.org/10.1038/s41598-019-49623-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 11:211–218. https://doi.org/10.1038/ncb1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nie J, Zhang Y, Ning L et al (2022) Phosphorylation of p53 by Cdk5 contributes to benzo[a]pyrene-induced neuronal apoptosis. Environ Toxicol 37:17–27. https://doi.org/10.1002/tox.23374

    Article  CAS  PubMed  Google Scholar 

  43. She H, Mao Z (2017) Study of ATM phosphorylation by Cdk5 in neuronal cells. Methods Mol Biol 1599:363–374. https://doi.org/10.1007/978-1-4939-6955-5_26

    Article  CAS  PubMed  Google Scholar 

  44. Lapresa R, Agulla J, Sánchez-Morán I et al (2019) Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology 146:19–27. https://doi.org/10.1016/j.neuropharm.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  45. Hirokawa T, Horie T, Fukiyama Y et al (2021) Roscovitine, a cyclin-dependent kinase-5 Inhibitor, decreases phosphorylated tau formation and death of retinal ganglion cells of rats after optic nerve crush. Int J Mol Sci 22. https://doi.org/10.3390/ijms22158096

  46. Pao P-C, Seo J, Lee A et al (2023) A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc Natl Acad Sci U S A 120:e2217864120. https://doi.org/10.1073/pnas.2217864120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reinhardt L, Kordes S, Reinhardt P et al (2019) Dual inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem cell reports 12:502–517. https://doi.org/10.1016/j.stemcr.2019.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu M, Huang Y, Song P et al (2019) AAV9-mediated Cdk5 inhibitory peptide reduces hyperphosphorylated tau and inflammation and ameliorates behavioral changes caused by overexpression of p25 in the brain. J Alzheimers Dis 70:573–585. https://doi.org/10.3233/JAD-190099

    Article  CAS  PubMed  Google Scholar 

  49. Huang Y, Huang W, Huang Y et al (2020) Cdk5 inhibitory peptide prevents loss of neurons and alleviates behavioral changes in p25 transgenic mice. J Alzheimers Dis 74:1231–1242. https://doi.org/10.3233/JAD-191098

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Indian Council of Medical Research (ICMR) for providing funds to carryout research and the University grants commission (UGC), Government of India for the award of fellowship.

Funding

This work was supported by the Grant 58/57/2012-BMS funded by Indian council of medical research (ICMR).

Author information

Authors and Affiliations

Authors

Contributions

ML performed all the experiments, did data analysis, and drafted the manuscript. SC proposed the idea and critically revised the work. LJMB assisted in conducting experiments. AR assisted in conducting FACS experiments, and J.S assisted in editing the manuscript.

Corresponding author

Correspondence to Suresh Challa.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokesh, M., Bandaru, L.J.M., Rajanna, A. et al. Unveiling Potential Neurotoxic Mechansisms: Pb-Induced Activation of CDK5-p25 Signaling Axis in Alzheimer’s Disease Development, Emphasizing CDK5 Inhibition and Formation of Toxic p25 Species. Mol Neurobiol 61, 3090–3103 (2024). https://doi.org/10.1007/s12035-023-03783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03783-0

Keywords

Navigation