Skip to main content

Advertisement

Log in

Alterations in Immune Responses Are Associated with Dysfunctional Intracellular Signaling in Peripheral Blood Mononuclear Cells of Men and Women with Mild Cognitive Impairment and Alzheimer’s disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Deficits in the neuroendocrine-immune network in the periphery associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) have not been extensively studied. The present study correlatively examines the association between cell-mediated immune responses, stress hormones, amyloid precursor protein (APP) expression, peripheral blood mononuclear cells (PBMC), and intracellular signaling molecules in the pathophysiology of MCI and AD compared to adults. Serum APP, lymphocyte proliferation, total cholinesterase (TChE), butyrylcholinesterase (BChE) activities, cytokines (IL-2, IFN-γ, IL-6, and TNF-α), and intracellular signaling molecules (p-ERK, p-CREB, and p-Akt) were measured in the PBMCs of adult, old, MCI, and AD men and women initially and after 3 years in the same population. An age- and disease-associated decline in mini-mental state examination (MMSE) scores and lymphocyte proliferation of MCI and AD men and women were observed. An age- and disease-related increase in serum APP, cortisol levels, and TChE activity were observed in men and women. Enhanced production of Th1 cytokine, IL-2, pro-inflammatory cytokines, and suppressed intracellular transcription factors may promote the inflammatory environment in MCI and AD patients. The expression of CREB and Akt was lower in MCI and AD men, while the expression of p-ERK was higher, and p-CREB was lower in MCI and AD women after 3 years. These results suggest that changes in specific intracellular signaling pathways may influence alterations in cell-mediated immunity to promote disease progression in MCI and AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and or analyzed are available from the corresponding author on request.

Abbreviations

AD:

Alzheimer’s disease

Akt:

Protein kinase B

APP:

Amyloid precursor protein

Aβ:

Amyloid beta

BBB:

Blood-brain barrier

BChE:

Butyrylcholinesterase

CNS:

Central nervous system

Con A:

Concanavalin A

CREB:

CAMP response element-binding protein

ERK:

Extracellular signal-regulated kinase

GSK3:

Glycogen synthase kinase 3

HDL:

High-density lipoprotein

HPA:

Hypothalamic-pituitary-adrenal

HRP:

Horseradish peroxidase

JNK:

C-Jun N-terminal kinase

LDL:

Low-density lipoprotein

MAPK:

Mitogen-activated protein kinase

MCI:

Mild cognitive impairment

MMSE:

Mini-mental state examination

NFT:

Neurofibrillary tangle

PBMC:

Peripheral blood mononuclear cells

TChE:

Total cholinesterase

TGF-β:

Transforming growth factor-β

References

  1. Selkoe DJ (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 17:489–517. https://doi.org/10.1146/annurev.ne.17.030194.002421

    Article  CAS  PubMed  Google Scholar 

  2. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787. https://doi.org/10.1038/nm0796-783

    Article  CAS  PubMed  Google Scholar 

  3. Bellinger DL, Millar BA, Perez S et al (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 252:27–56. https://doi.org/10.1016/j.cellimm.2007.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. ThyagaRajan S, Priyanka HP (2012) Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Ann Neurosci 19:40–46. https://doi.org/10.5214/ans.0972.7531.180410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diamanti-Kandarakis E, Dattilo M, Macut D et al (2017) Mechanisms in endocrinology: aging and anti-aging: a combo-endocrinology overview. Eur J Endocrinol 176:R283–R308. https://doi.org/10.1530/EJE-16-1061

    Article  CAS  PubMed  Google Scholar 

  6. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20. https://doi.org/10.1016/j.brainresbull.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Kinney JW, Bemiller SM, Murtishaw AS et al (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 4:575–590. https://doi.org/10.1016/j.trci.2018.06.014

    Article  PubMed  Google Scholar 

  8. Latta CH, Brothers HM, Wilcock DM (2015) Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience 302:103–111. https://doi.org/10.1016/j.neuroscience.2014.09.061

    Article  CAS  PubMed  Google Scholar 

  9. Howland DS, Trusko SP, Savage MJ et al (1998) Modulation of secreted beta-amyloid precursor protein and amyloid beta-peptide in brain by cholesterol. J Biol Chem 273:16576–16582. https://doi.org/10.1074/jbc.273.26.16576

    Article  CAS  PubMed  Google Scholar 

  10. Muresan Z, Muresan V (2006) Neuritic deposits of amyloid-β peptide in a subpopulation of central nervous system-derived neuronal cells. Mol Cell Biol 26:4982–4997. https://doi.org/10.1128/MCB.00371-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kirouac L, Rajic AJ, Cribbs DH (2017) Padmanabhan J (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. eNeuro 4:0149-ENEURO.0149-16.20176. https://doi.org/10.1523/ENEURO.0149-16.2017

    Article  Google Scholar 

  12. von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124. https://doi.org/10.3389/fnagi.2015.00124

    Article  Google Scholar 

  13. Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D et al (2013) Inflammatory process in Alzheimer’s disease. Front Integr Neurosci 7:59. https://doi.org/10.3389/fnint.2013.00059

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kalaria RN (1999) The blood-brain barrier and cerebrovascular pathology in Alzheimer’s disease. Ann N Y Acad Sci 893:113–125. https://doi.org/10.1111/j.1749-6632.1999.tb07821.x

    Article  CAS  PubMed  Google Scholar 

  15. Togo T, Akiyama H, Iseki E et al (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124:83–92. https://doi.org/10.1016/s0165-5728(01)00496-9

    Article  CAS  PubMed  Google Scholar 

  16. Lambracht-Washington D, Qu B-X, Fu M et al (2011) DNA Immunization against amyloid beta 42 has high potential as safe therapy for Alzheimer’s disease as it diminishes antigen-specific Th1 and Th17 cell proliferation. Cell Mol Neurobiol 31:867–874. https://doi.org/10.1007/s10571-011-9680-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saresella M, Calabrese E, Marventano I et al (2010) PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 21:927–938. https://doi.org/10.3233/JAD-2010-091696

    Article  CAS  PubMed  Google Scholar 

  18. Oberstein TJ, Taha L, Spitzer P et al (2018) Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: a case control study. Front Immunol 9:1213. https://doi.org/10.3389/fimmu.2018.01213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liddelow SA, Guttenplan KA, Clarke LE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Speciale L, Calabrese E, Saresella M et al (2007) Lymphocyte subset patterns and cytokine production in Alzheimer’s disease patients. Neurobiol Aging 28:1163–1169. https://doi.org/10.1016/j.neurobiolaging.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  21. Schindowski K, Eckert A, Peters J et al (2007) Increased T-cell reactivity and elevated levels of CD8+ memory T-cells in Alzheimer’s disease-patients and T-cell hyporeactivity in an Alzheimer’s disease-mouse model: implications for immunotherapy. Neuromolecular Med 9:340–354. https://doi.org/10.1007/s12017-007-8015-9

    Article  CAS  PubMed  Google Scholar 

  22. Bartolotti N, Bennett DA, Lazarov O (2016) Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells. Mol Psychiatry 21:1158–1166. https://doi.org/10.1038/mp.2016.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee S-T, Chu K, Jung K-H et al (2010) Dysfunctional characteristics of circulating angiogenic cells in Alzheimer’s disease. J Alzheimers Dis 19:1231–1240. https://doi.org/10.3233/JAD-2010-1315

    Article  CAS  PubMed  Google Scholar 

  24. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement 10:S76-83. https://doi.org/10.1016/j.jalz.2013.12.010

    Article  PubMed  Google Scholar 

  25. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439. https://doi.org/10.1111/j.1471-4159.2007.05194.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chong ZZ, Li F, Maiese K (2005) Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res Brain Res Rev 49:1–21. https://doi.org/10.1016/j.brainresrev.2004.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vasantharekha R, Priyanka HP, Swarnalingam T et al (2017) Interrelationship between mini-mental state examination scores and biochemical parameters in patients with mild cognitive impairment and Alzheimer’s disease. Geriatr Gerontol Int 17:1737–1745. https://doi.org/10.1111/ggi.12957

    Article  PubMed  Google Scholar 

  28. Lara VP, Caramelli P, Teixeira AL et al (2013) High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia. Clin Chim Acta 423:18–22. https://doi.org/10.1016/j.cca.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  29. Ouanes S, Popp J (2019) High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci 11:43. https://doi.org/10.3389/fnagi.2019.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. García-Ayllón M-S, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22. https://doi.org/10.3389/fnmol.2011.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. García-Ayllón M-S, Riba-Llena I, Serra-Basante C et al (2010) Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS ONE 5:e8701. https://doi.org/10.1371/journal.pone.0008701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Macdonald IR, Maxwell SP, Reid GA et al (2017) Quantification of butyrylcholinesterase activity as a sensitive and specific biomarker of Alzheimer’s disease. J Alzheimers Dis 58:491–505. https://doi.org/10.3233/JAD-170164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jasiecki J, Wasąg B (2019) Butyrylcholinesterase protein ends in the pathogenesis of Alzheimer’s disease-could BCHE genotyping be helpful in Alzheimer’s therapy? Biomolecules 9:592. https://doi.org/10.3390/biom9100592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sadigh-Eteghad S, Sabermarouf B, Majdi A et al (2015) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 24:1–10. https://doi.org/10.1159/000369101

    Article  PubMed  Google Scholar 

  35. ThyagaRajan S, Madden KS, Kalvass JC et al (1998) L-deprenyl-induced increase in IL-2 and NK cell activity accompanies restoration of noradrenergic nerve fibers in the spleens of old F344 rats. J Neuroimmunol 92:9–21. https://doi.org/10.1016/s0165-5728(98)00039-3

    Article  CAS  PubMed  Google Scholar 

  36. Priyanka HP, Sharma U, Gopinath S et al (2013) Menstrual cycle and reproductive aging alters immune reactivity, NGF expression, antioxidant enzyme activities, and intracellular signaling pathways in the peripheral blood mononuclear cells of healthy women. Brain Behav Immun 32:131–143. https://doi.org/10.1016/j.bbi.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  37. Pratap UP, Hima L, Kannan T et al (2020) Sex-based differences in the cytokine production and intracellular signaling pathways in patients with rheumatoid arthritis. Arch Rheumatol 35:545–557. https://doi.org/10.46497/ArchRheumatol.2020.7481

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hima L, Patel MN, Kannan T et al (2020) Age-associated decline in neural, endocrine, and immune responses in men and women: involvement of intracellular signaling pathways. J Neuroimmunol 345:577290. https://doi.org/10.1016/j.jneuroim.2020.577290

    Article  CAS  PubMed  Google Scholar 

  39. ThyagaRajan S, Felten DL (2002) Modulation of neuroendocrine–immune signaling by L-deprenyl and L-desmethyldeprenyl in aging and mammary cancer. Mech Ageing Dev 123:1065–1079. https://doi.org/10.1016/s0047-6374(01)00390-6

    Article  CAS  PubMed  Google Scholar 

  40. Serpente M, Bonsi R, Scarpini E, Galimberti D (2014) Innate immune system and inflammation in Alzheimer’s disease: from pathogenesis to treatment. NeuroImmunoModulation 21:79–87. https://doi.org/10.1159/000356529

    Article  CAS  PubMed  Google Scholar 

  41. Ma Q-L, Harris-White ME, Ubeda OJ et al (2007) Evidence of Aβ- and transgene-dependent defects in ERK-CREB signaling in Alzheimer’s models. J Neurochem 103:1594–1607. https://doi.org/10.1111/j.1471-4159.2007.04869.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morgan JE, Gaynor-Metzinger SA, Beck SD et al (2022) Serum amyloid beta precursor protein, neurofilament light, and visinin-like protein-1 in rugby players: an exploratory study. Sports 10:194. https://doi.org/10.3390/sports10120194

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goronzy JJ, Fang F, Cavanagh MM et al (2015) Naive T cell maintenance and function in human aging. J Immunol 194:4073–4080. https://doi.org/10.4049/jimmunol.1500046

    Article  CAS  PubMed  Google Scholar 

  44. Chen BH, Carty CL, Kimura M et al (2017) Leukocyte telomere length, T cell composition and DNA methylation age. Aging 9:1983–1995. https://doi.org/10.18632/aging.101293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu C-G, Song J, Zhang Y-Q, Wang P-C (2014) MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol Med Rep 10:2395–2400. https://doi.org/10.3892/mmr.2014.2484

    Article  CAS  PubMed  Google Scholar 

  46. Jóźwik A, Landowski J, Bidzan L et al (2012) Beta-amyloid peptides enhance the proliferative response of activated CD4CD28 lymphocytes from Alzheimer disease patients and from healthy elderly. PLoS ONE 7:e33276. https://doi.org/10.1371/journal.pone.0033276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huberman M, Sredni B, Stern L et al (1995) IL-2 and IL-6 secretion in dementia: correlation with type and severity of disease. J Neurol Sci 130:161–164. https://doi.org/10.1016/0022-510x(95)00016-u

    Article  CAS  PubMed  Google Scholar 

  48. Ding R, Gao W, Ostrodci DH et al (2013) Effect of interleukin-2 level and genetic variants on coronary artery disease. Inflammation 36:1225–1231. https://doi.org/10.1007/s10753-013-9659-2

    Article  CAS  PubMed  Google Scholar 

  49. Kokras N, Stamouli E, Sotiropoulos I et al (2018) Acetyl cholinesterase inhibitors and cell-derived peripheral inflammatory cytokines in early stages of Alzheimer’s disease. J Clin Psychopharmacol 38:138–143. https://doi.org/10.1097/JCP.0000000000000840

    Article  CAS  PubMed  Google Scholar 

  50. Castri P, Iacovelli L, De Blasi A et al (2007) Reduced insulin-induced phosphatidylinositol-3-kinase activation in peripheral blood mononuclear leucocytes from patients with Alzheimer’s disease. Eur J Neurosci 26:2469–2472. https://doi.org/10.1111/j.1460-9568.2007.05869.x

    Article  PubMed  Google Scholar 

  51. Ascolani A, Balestrieri E, Minutolo A et al (2012) Dysregulated NF-κB pathway in peripheral mononuclear cells of Alzheimer’s disease patients. Curr Alzheimer Res 9:128–137. https://doi.org/10.2174/156720512799015091

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the study volunteers, caregivers, and physicians, T. Swarnalingam MD, T. Sripriya MBBS, DNB, Ph. D., D. Killivalavan, MBBS, S. Madhumalar, MD, N. Rajkumar, MBBS, A. Pushparani, MD, M. Buvana, MS, and T. Prakash, MD for their assistance in the data collection and C. Thyagarajan, Sushruth S, Soha Chaya, T. Kannan, Mantavya Patel, Shaili Gour, R. Kishore Aravind, and Sunil Karrunanithi for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study’s conception and design. Material preparation, data collection, and data analysis were performed by RV, UP, and LH. The first draft of the manuscript was fully written by RV, edited by RN, HP, and STR, and supervised by AVS and STR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramasamy Vasantharekha.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki Approval was granted by the Ethics Committee of SRM Medical College Hospital and Research Centre, Kattankulathur, (66 /IEC/2010).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasantharekha, R., Priyanka, H.P., Nair, R.S. et al. Alterations in Immune Responses Are Associated with Dysfunctional Intracellular Signaling in Peripheral Blood Mononuclear Cells of Men and Women with Mild Cognitive Impairment and Alzheimer’s disease. Mol Neurobiol 61, 2964–2977 (2024). https://doi.org/10.1007/s12035-023-03764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03764-3

Keywords

Navigation