Skip to main content
Log in

Intranasal Delivery of Mitochondria Attenuates Brain Injury by AMPK and SIRT1/PGC-1α Pathways in a Murine Model of Photothrombotic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke is one of the major causes of morbidity and mortality worldwide. Mitochondria play a vital role in the pathological processes of cerebral ischemic injury, but its transplantation and underlying mechanisms remain unclear. In the present study, we examined the effects of mitochondrial therapy on the modulation of AMPK and SIRT1/PGC-1α signaling pathway, oxidative stress, and NLRP3 inflammasome activation after photothrombotic ischemic stroke (pt-MCAO). The adult male mice were subjected to the pt-MCAO in which the proximal-middle cerebral artery was exposed with a 532-nm laser beam for 4 min by retro-orbital injection of a photosensitive dye (Rose Bengal: 15 mg/kg) before the laser light exposure and isolated mitochondria (100 μg protein) were administered intranasally at 30 min, 24 h, and 48 h following post-stroke. After 72 h, mice were tested for neurobehavioral outcomes and euthanized for infarct volume, brain edema, and molecular analysis. First, we found that mitochondria therapy significantly decreased brain infarct volume and brain edema, improved neurological dysfunction, attenuated ischemic stroke-induced oxidative stress, and neuroinflammation. Second, mitochondria treatment inhibited NLRP3 inflammasome activation. Finally, mitochondria therapy accelerated p-AMPKα(Thr172) and PGC-1α expression and resorted SIRT1 protein expression levels in pt-MCAO mice. In conclusion, our results demonstrate that mitochondria therapy exerts neuroprotective effects by inhibiting oxidative damage and inflammation, mainly dependent on the heightening activation of the AMPK and SIRT1/PGC-1α signaling pathway. Thus, intranasal delivery of mitochondria might be considered a new therapeutic strategy for ischemic stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data generated and analyzed in this study are available from the corresponding author upon reasonable request.

References

  1. Feigin VL, Stark BA, Johnson CO et al (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20:795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  CAS  Google Scholar 

  2. Kaushik P, Ali M, Salman M et al (2021) Harnessing the mitochondrial integrity for neuroprotection: therapeutic role of piperine against experimental ischemic stroke. Neurochem Int 149:105138. https://doi.org/10.1016/j.neuint.2021.105138

    Article  CAS  PubMed  Google Scholar 

  3. Cheng NT, Kim AS (2015) Intravenous thrombolysis for acute ischemic stroke within 3 hours versus between 3 and 4.5 hours of symptom onset. Neurohospitalist 5:101–109. https://doi.org/10.1177/1941874415583116

    Article  PubMed  PubMed Central  Google Scholar 

  4. Papanagiotou P, Ntaios G (2018) Endovascular thrombectomy in acute ischemic stroke. Circ Cardiovasc Interv 11. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005362

  5. Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y (2018) Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr Neuropharmacol 16:1396–1415. https://doi.org/10.2174/1570159X16666180302115544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin C, Yang S, Chu Y-H et al (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7:215. https://doi.org/10.1038/s41392-022-01064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russo E, Nguyen H, Lippert T et al (2018) Mitochondrial targeting as a novel therapy for stroke. Brain Circ 4:84. https://doi.org/10.4103/bc.bc_14_18

    Article  PubMed  PubMed Central  Google Scholar 

  8. He Z, Ning N, Zhou Q et al (2020) Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 146:45–58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  9. Carinci M, Vezzani B, Patergnani S et al (2021) Different roles of mitochondria in cell death and inflammation: focusing on mitochondrial quality control in ischemic stroke and reperfusion. Biomedicines 9:169. https://doi.org/10.3390/biomedicines9020169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109:133–138. https://doi.org/10.1111/j.1471-4159.2009.05897.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zádori D, Klivényi P, Szalárdy L et al (2012) Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci 322:187–191. https://doi.org/10.1016/j.jns.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  12. Chen S-D, Yang D-I, Lin T-K et al (2011) Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215. https://doi.org/10.3390/ijms12107199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song M, Zhou Y, Fan X (2022) Mitochondrial quality and quantity control: mitophagy is a potential therapeutic target for ischemic stroke. Mol Neurobiol 59:3110–3123. https://doi.org/10.1007/s12035-022-02795-6

    Article  CAS  PubMed  Google Scholar 

  14. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Liu X, Zheng Y et al (2021) Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the AMPK/SIRT-1/NF-κB signaling pathway and gut microbiota. Sci Rep 11:20558. https://doi.org/10.1038/s41598-021-00071-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gravandi MM, Fakhri S, Zarneshan SN et al (2021) Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 36:1501–1521. https://doi.org/10.1007/s11011-021-00750-3

    Article  CAS  PubMed  Google Scholar 

  17. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690. https://doi.org/10.1016/j.cmet.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cantó C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT-1 activity. Nature 458:1056–1060. https://doi.org/10.1038/nature07813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90. https://doi.org/10.1210/er.2002-0012

    Article  CAS  PubMed  Google Scholar 

  20. Duncan JG (2011) Peroxisome proliferator activated receptor-alpha (PPARα) and PPAR gamma coactivator-1alpha (PGC-1α) regulation of cardiac metabolism in diabetes. Pediatr Cardiol 32:323–328. https://doi.org/10.1007/s00246-011-9889-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Selvakumar GP, Iyer SS, Kempuraj D et al (2018) Glia maturation factor dependent inhibition of mitochondrial PGC-1α triggers oxidative stress-mediated apoptosis in N27 rat dopaminergic neuronal cells. Mol Neurobiol 55:7132–7152. https://doi.org/10.1007/s12035-018-0882-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Falany CN (1997) Enzymology of human cytosolic sulfotransferases. FASEB J 11:206–216. https://doi.org/10.1096/fasebj.11.4.9068609

    Article  CAS  PubMed  Google Scholar 

  23. Allali-Hassani A, Pan PW, Dombrovski L et al (2007) Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol 5:e97. https://doi.org/10.1371/journal.pbio.0050097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brettrager EJ, Meehan AW, Falany CN, van Waardenburg RCAM (2022) Sulfotransferase 4A1 activity facilitates sulfate-dependent cellular protection to oxidative stress. Sci Rep 12:1625. https://doi.org/10.1038/s41598-022-05582-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brennan MD, Condra J (2005) Transmission disequilibrium suggests a role for the sulfotransferase-4A1 gene in schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 139B:69–72. https://doi.org/10.1002/ajmg.b.30222

    Article  CAS  Google Scholar 

  26. Phelan K, McDermid HE (2011) The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol 2:186–201. https://doi.org/10.1159/000334260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia PL, Hossain MI, Andrabi SA, Falany CN (2018) Generation and characterization of SULT4A1 mutant mouse models. Drug Metab Dispos 46:41–45. https://doi.org/10.1124/dmd.117.077560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hossain MI, Marcus JM, Lee JH et al (2019) SULT4A1 protects against oxidative-stress induced mitochondrial dysfunction in neuronal cells. Drug Metab Dispos 47:949–953. https://doi.org/10.1124/dmd.119.088047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayakawa K, Esposito E, Wang X et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura Y, Lo EH, Hayakawa K (2020) Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. Stroke 51:3142–3146. https://doi.org/10.1161/STROKEAHA.120.030152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang P-J, Kuo C-C, Lee H-C et al (2016) Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant 25:913–927. https://doi.org/10.3727/096368915X689785

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Ma Z, Yan C et al (2019) Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav Brain Res 356:322–331. https://doi.org/10.1016/j.bbr.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  33. Pourmohammadi-Bejarpasi Z, Roushandeh AM, Saberi A et al (2020) Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 165:70–80. https://doi.org/10.1016/j.brainresbull.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed HA, Ismael S, Salman M et al (2022) Direct AT2R stimulation slows post-stroke cognitive decline in the 5XFAD Alzheimer’s disease mice. Mol Neurobiol 59:4124–4140. https://doi.org/10.1007/s12035-022-02839-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Preble JM, Pacak CA, Kondo H et al (2014) Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp. https://doi.org/10.3791/51682

  36. Ismael S, Nasoohi S, Li L et al (2021) Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiol Dis 156:105399. https://doi.org/10.1016/j.nbd.2021.105399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nasoohi S, Tayefeh Ghahremani P, Alehossein P et al (2023) The p75 neurotrophin receptor inhibitor, LM11A-31, ameliorates acute stroke injury and modulates astrocytic proNGF. Exp Neurol 359:114161. https://doi.org/10.1016/j.expneurol.2022.114161

    Article  CAS  PubMed  Google Scholar 

  38. Salman M, Tabassum H, Parvez S (2020) Tannic acid provides neuroprotective effects against traumatic brain injury through the PGC-1α/Nrf2/HO-1 pathway. Mol Neurobiol 57:2870–2885. https://doi.org/10.1007/s12035-020-01924-3

    Article  CAS  PubMed  Google Scholar 

  39. Salman M, Ismael S, Li L et al (2021) Endothelial thioredoxin-interacting protein depletion reduces hemorrhagic transformation in hyperglycemic mice after embolic stroke and thrombolytic therapy. Pharmaceuticals 14:983. https://doi.org/10.3390/ph14100983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ismael S, Patrick D, Salman M et al (2022) Verapamil inhibits TXNIP-NLRP3 inflammasome activation and preserves functional recovery after intracerebral hemorrhage in mice. Neurochem Int 161:105423. https://doi.org/10.1016/j.neuint.2022.105423

    Article  CAS  PubMed  Google Scholar 

  41. Xiao X-T, Luo C, Yuan Y et al (2021) Systematic evaluation during early-phase ischemia predicts outcomes in middle cerebral artery occlusion mice. Neuroreport 32:29–37. https://doi.org/10.1097/WNR.0000000000001553

    Article  CAS  PubMed  Google Scholar 

  42. Ruderman NB, Julia XX, Nelson L et al (2010) AMPK and SIRT-1: a long-standing partnership? Am J Physiol Metab 298:E751–E760. https://doi.org/10.1152/ajpendo.00745.2009

    Article  CAS  Google Scholar 

  43. Zhou Y, Wang S, Li Y et al (2018) SIRT-1/PGC-1α signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats. Front Mol Neurosci 10. https://doi.org/10.3389/fnmol.2017.00443

  44. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/bse0470069

    Article  CAS  PubMed  Google Scholar 

  45. Hong P, Gu R-N, Li F-X et al (2019) NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflammation 16:121. https://doi.org/10.1186/s12974-019-1498-0

    Article  PubMed  PubMed Central  Google Scholar 

  46. Salman M, Tabassum H, Parvez S (2020) Nrf2/HO-1 mediates neuroprotective effects of pramipexole by attenuating oxidative damage and mitochondrial perturbation after traumatic brain injury. Dis Model Mech. https://doi.org/10.1242/dmm.045021

  47. Li J, Gao W, Zhao Z et al (2022) Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol Neurobiol 59:2855–2873. https://doi.org/10.1007/s12035-022-02740-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo Y, Fang Y, Kang R et al (2020) Inhibition of EZH2 (enhancer of zeste homolog 2) attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (trimethylation of histone 3 lysine 27/suppressor of cytokine signaling 3/tumor necrosis factor receptor family 6/nuclear factor-κB) in a rat mode. Stroke 51:3320–3331. https://doi.org/10.1161/STROKEAHA.120.029951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cherait A, Maucotel J, Lefranc B et al (2021) Intranasal administration of PACAP is an efficient delivery route to reduce infarct volume and promote functional recovery after transient and permanent middle cerebral artery occlusion. Front Endocrinol (Lausanne) 11. https://doi.org/10.3389/fendo.2020.585082

  50. Guo X, Zhang Y, Liu C et al (2022) Intranasal administration of β-1, 3-galactosyltransferase 2 confers neuroprotection against ischemic stroke by likely inhibiting oxidative stress and <scp>NLRP3</scp> inflammasome activation. FASEB J 36. https://doi.org/10.1096/fj.202200456RR

  51. Salman M, Ismael S, Li L et al (2022) Acute hyperglycemia exacerbates hemorrhagic transformation after embolic stroke and reperfusion with tPA: a possible role of TXNIP-NLRP3 inflammasome. J Stroke Cerebrovasc Dis 31:106226. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106226

    Article  PubMed  Google Scholar 

  52. Ismael S, Nasoohi S, Yoo A et al (2020) Tissue plasminogen activator promotes TXNIP-NLRP3 inflammasome activation after hyperglycemic stroke in mice. Mol Neurobiol 57:2495–2508. https://doi.org/10.1007/s12035-020-01893-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ishrat T, Soliman S, Eldahshan W et al (2018) Silencing VEGF-B diminishes the neuroprotective effect of candesartan treatment after experimental focal cerebral ischemia. Neurochem Res 43:1869–1878. https://doi.org/10.1007/s11064-018-2604-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee J-Y, Castelli V, Kumar N et al (2022) Contraceptive drug, Nestorone, enhances stem cell-mediated remodeling of the stroke brain by dampening inflammation and rescuing mitochondria. Free Radic Biol Med 183:138–145. https://doi.org/10.1016/j.freeradbiomed.2022.03.020

    Article  CAS  PubMed  Google Scholar 

  55. Chen H, Yoshioka H, Kim GS et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517. https://doi.org/10.1089/ars.2010.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garry PS, Ezra M, Rowland MJ et al (2015) The role of the nitric oxide pathway in brain injury and its treatment — from bench to bedside. Exp Neurol 263:235–243. https://doi.org/10.1016/j.expneurol.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  57. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61:62–97. https://doi.org/10.1124/pr.108.000547

    Article  CAS  PubMed  Google Scholar 

  58. Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136. https://doi.org/10.1093/jnen/62.2.127

    Article  CAS  PubMed  Google Scholar 

  59. Ismael S, Zhao L, Nasoohi S, Ishrat T (2018) Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci Rep 8:5971. https://doi.org/10.1038/s41598-018-24350-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang-Wei Fann D, Lee S-Y, Manzanero S et al (2013) Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 4:e790–e790. https://doi.org/10.1038/cddis.2013.326

    Article  CAS  PubMed Central  Google Scholar 

  61. Yang F, Wang Z, Wei X et al (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34:660–667. https://doi.org/10.1038/jcbfm.2013.242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin J-N, Lin VC-H, Rau K-M et al (2010) Resveratrol modulates tumor cell proliferation and protein translation via SIRT-1-dependent AMPK activation. J Agric Food Chem 58:1584–1592. https://doi.org/10.1021/jf9035782

    Article  CAS  PubMed  Google Scholar 

  63. Wang P, Xu T-Y, Guan Y-F et al (2011) Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT-1-dependent adenosine monophosphate-activated kinase pathway. Ann Neurol 69:360–374. https://doi.org/10.1002/ana.22236

    Article  CAS  PubMed  Google Scholar 

  64. Wareski P, Vaarmann A, Choubey V et al (2009) PGC-1α and PGC-1Β regulate mitochondrial density in neurons. J Biol Chem 284:21379–21385. https://doi.org/10.1074/jbc.M109.018911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Awad-Igbaria Y, Ferreira N, Keadan A, Sakas R, Edelman D, Shamir A, Francous-Soustiel J et al (2023) HBO treatment enhances motor function and modulates pain development after sciatic nerve injury via protection the mitochondrial function. J Transl Med. 15:545. https://doi.org/10.1186/s12967-023-04414-x

    Article  CAS  Google Scholar 

  66. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1α and SIRT-1 pathways. FEBS Lett 582:46–53. https://doi.org/10.1016/j.febslet.2007.11.034

    Article  CAS  PubMed  Google Scholar 

  67. Wang H, Peiris TH, Mowery A et al (2008) CCAAT/enhancer binding protein-β is a transcriptional regulator of peroxisome-proliferator-activated receptor-γ coactivator-1α in the regenerating liver. Mol Endocrinol 22:1596–1605. https://doi.org/10.1210/me.2007-0388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Han L, Wang P, Zhao G et al (2013) Upregulation of SIRT-1 by 17β-estradiol depends on ubiquitin-proteasome degradation of PPAR-γ mediated by NEDD4-1. Protein Cell 4:310–321. https://doi.org/10.1007/s13238-013-2124-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fu B, Zhang J, Zhang X et al (2014) Alpha-lipoic acid upregulates SIRT-1-dependent PGC-1α expression and protects mouse brain against focal ischemia. Neuroscience 281:251–257. https://doi.org/10.1016/j.neuroscience.2014.09.058

    Article  CAS  PubMed  Google Scholar 

  70. Chandrasekaran K, Anjaneyulu M, Choi J et al (2019) Role of mitochondria in diabetic peripheral neuropathy: influencing the NAD+-dependent SIRT-1–PGC-1α–TFAM pathway. Int Rev Neurobiol 145:177–209. https://doi.org/10.1016/bs.irn.2019.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao Z, Zhu Q, Zhang Y et al (2013) Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol 48:690–701. https://doi.org/10.1007/s12035-013-8460-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chamorro Á, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15:869–881. https://doi.org/10.1016/S1474-4422(16)00114-9

    Article  CAS  PubMed  Google Scholar 

  73. Wang Q, Tang X, Yenari M (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68. https://doi.org/10.1016/j.jneuroim.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  74. Chen J, Zhang M, Zhang X et al (2019) EZH2 inhibitor DZNep modulates microglial activation and protects against ischaemic brain injury after experimental stroke. Eur J Pharmacol 857:172452. https://doi.org/10.1016/j.ejphar.2019.172452

    Article  CAS  PubMed  Google Scholar 

  75. He T, Shang J, Gao C et al (2021) A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sin B 11:708–726. https://doi.org/10.1016/j.apsb.2020.11.002

    Article  CAS  PubMed  Google Scholar 

  76. Korzhevskii DE, Kirik OV (2016) Brain microglia and microglial markers. Neurosci Behav Physiol 46:284–290. https://doi.org/10.1007/s11055-016-0231-z

    Article  CAS  Google Scholar 

  77. Yew WP, Djukic ND, Jayaseelan JSP et al (2019) Early treatment with minocycline following a stroke in rats improves functional recovery and differentially modifies responses of peri-infarct microglia and astrocytes. J Neuroinflammation 16:6. https://doi.org/10.1186/s12974-018-1379-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

Not applicable

Funding

This work was supported by the UTHSC Bridge funding award (E073005058– Bridge Support-2022) and the National Institute of Health (R01-NS097800 and R56 NS127924-01) to T.I and DK117183 and DK132230 to A.B. The American Heart Association (AHA) Postdoctoral Fellowship 1029163 to M.S.

Author information

Authors and Affiliations

Authors

Contributions

Mohd. Salman conducted all experiments, data analysis, writing of the first draft, and manuscript preparation. Amandeep Bajwa reviewed the manuscript. Amanda Stayton helped in mitochondria isolation and preparation and reviewed the manuscript. Kehkashan Parveen, Arshi Parveen, Michelle A Puchowicz, and Suhel Parvez helped with the experimental design and review of the manuscript. Tauheed Ishrat designed and oversaw the project, including experimental design, managed resources, and critically reviewed the manuscript.

Corresponding authors

Correspondence to Mohd. Salman, Amandeep Bajwa or Tauheed Ishrat.

Ethics declarations

All procedures related to animal studies were approved by the institutional animal committee at UTHSC in full accordance with the ethical guidelines of the National Institutes of Health for the care and use of laboratory animals.

Consent to Participate

Not applicable

Consent for Publication

All authors have agreed to publish this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, M., Stayton, A.S., Parveen, K. et al. Intranasal Delivery of Mitochondria Attenuates Brain Injury by AMPK and SIRT1/PGC-1α Pathways in a Murine Model of Photothrombotic Stroke. Mol Neurobiol 61, 2822–2838 (2024). https://doi.org/10.1007/s12035-023-03739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03739-4

Keywords

Navigation