Skip to main content

Advertisement

Log in

Tissue Plasminogen Activator Promotes TXNIP-NLRP3 Inflammasome Activation after Hyperglycemic Stroke in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hyperglycemia has been shown to counterbalance the beneficial effects of tissue plasminogen activator (tPA) and increase the risk of intracerebral hemorrhage in ischemic stroke. Thioredoxin interacting protein (TXNIP) mediates hyperglycemia-induced oxidative damage and inflammation in the brain and reduces cerebral glucose uptake/utilization. We have recently reported that TXNIP-induced NLRP3 (NOD-like receptor pyrin domain-containing-3) inflammasome activation contributes to neuronal damage after ischemic stroke. Here, we tested the hypothesis that tPA induces TXNIP-NLRP3 inflammasome activation after ischemic stroke, in hyperglycemic mice. Acute hyperglycemia was induced in mice by intraperitoneal (IP) administration of a 20% glucose solution. This was followed by transient middle cerebral artery occlusion (t-MCAO), with or without intravenous (IV) tPA administered at reperfusion. The IV-tPA exacerbated hyperglycemia-induced neurological deficits, ipsilateral edema and hemorrhagic transformation, and accentuated peroxisome proliferator activated receptor-γ (PPAR-γ) upregulation and TXNIP/NLRP3 inflammasome activation after ischemic stroke. Higher expression of TXNIP in hyperglycemic t-MCAO animals augmented glucose transporter 1 (GLUT-1) downregulation and increased vascular endothelial growth factor-A (VEGF-A) expression/matrix metallopeptidase 9 (MMP-9) signaling, all of which result in blood brain barrier (BBB) disruption and increased permeability to endogenous immunoglobulin G (IgG). It was also associated with a discernible buildup of nitrotyrosine and accumulation of dysfunctional tight junction proteins: zonula occludens-1 (ZO-1), occludin and claudin-5. Moreover, tPA administration triggered activation of high mobility group box protein 1 (HMGB-1), nuclear factor kappa B (NF-κB), and tumor necrosis factor-α (TNF-α) expression in the ischemic penumbra of hyperglycemic animals. All of these observations suggest a powerful role for TXNIP-NLRP3 inflammasome activation in the tPA-induced toxicity seen with hyperglycemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASC:

Apoptosis-associated speck-like protein

BBB:

Blood brain barrier

DAMPs:

Damage-associated molecular patterns

GLUT-1:

Glucose transporter-1

HG:

Hyperglycemic

HMGB-1:

High mobility group box protein-1

HT:

Hemorrhagic transformation

IL-1β:

Interleukin 1-β

I/R:

Ischemic reperfusion

LPR:

Lipoprotein receptor–related protein

MMP:

Matrix metalloprotease

NF-κB:

Nuclear factor kappa B

NLRP3:

NOD-like receptor pyrin domain-containing-3

PAR1:

Protease activated receptor 1

PPAR-γ:

Peroxisome proliferator activated receptor-γ

TJ proteins:

Tight junction proteins

TLR:

Tol like receptor

tMCAO:

Transient middle cerebral artery occlusion

TNF-α:

Tumor necrosis factor-α

tPA:

Tissue plasminogen activator

TRX:

Thioredoxin

TXNIP:

Thioredoxin interacting protein

VEGF-A:

Vascular endothelial growth factor-A

ZO-1:

Zonula occludens-1

References

  1. Tsivgoulis G, Katsanos AH, Mavridis D, Lambadiari V, Roffe C, Macleod MJ, Sevcik P, Cappellari M et al (2019) Association of baseline hyperglycemia with outcomes of patients with and without diabetes with acute ischemic stroke treated with intravenous thrombolysis: a propensity score–matched analysis from the SITS-ISTR registry. Diabetes 68(9):1861–1869

    CAS  PubMed  Google Scholar 

  2. Yong M, Kaste M (2008) Dynamic of hyperglycemia as a predictor of stroke outcome in the ECASS-II trial. Stroke 39(10):2749–2755

    PubMed  Google Scholar 

  3. Johnston KC, Bruno A, Pauls Q, Hall CE, Barrett KM, Barsan W, Fansler A, Van de Bruinhorst K et al (2019) Intensive vs standard treatment of hyperglycemia and functional outcome in patients with acute ischemic stroke: the SHINE randomized clinical trial. JAMA 322(4):326–335

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bruno A, Durkalski VL, Hall CE, Juneja R, Barsan WG, Janis S, Meurer WJ, Fansler A et al (2014) The stroke hyperglycemia insulin network effort (SHINE) trial protocol: a randomized, blinded, efficacy trial of standard vs. intensive hyperglycemia management in acute stroke. Int J Stroke 9(2):246–251

    PubMed  Google Scholar 

  5. Allport L, Baird T, Butcher K, MacGregor L, Prosser J, Colman P, Davis S (2006) Frequency and temporal profile of poststroke hyperglycemia using continuous glucose monitoring. Diabetes Care 29(8):1839–1844

    CAS  PubMed  Google Scholar 

  6. Furie KL, Ay H (2018) Initial evaluation and management of transient ischemic attacks and minor ischemic stroke. UpToDate Waltham, MA

  7. Chow BW, Gu C (2015) The molecular constituents of the blood–brain barrier. Trends Neurosci 38(10):598–608

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kago T, Takagi N, Date I, Takenaga Y, Takagi K, Takeo S (2006) Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun 339(4):1197–1203

    CAS  PubMed  Google Scholar 

  9. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27(4):697–709

    CAS  PubMed  Google Scholar 

  10. Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM (2004) The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab 24(9):945–963

    CAS  PubMed  Google Scholar 

  11. Zhang S, An Q, Wang T, Gao S, Zhou G (2018) Autophagy-and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood–brain barrier permeability during early reperfusion in stroke. Neuroscience 377:126–137

    CAS  PubMed  Google Scholar 

  12. Kim GS, Jung JE, Narasimhan P, Sakata H, Chan PH (2012) Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiol Dis 46(2):440–449

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279(29):30369–30374

    CAS  PubMed  Google Scholar 

  14. Waldhart AN, Dykstra H, Peck AS, Boguslawski EA, Madaj ZB, Wen J, Veldkamp K, Hollowell M et al (2017) Phosphorylation of TXNIP by AKT mediates acute influx of glucose in response to insulin. Cell Rep 19(10):2005–2013

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bedarida T, Domingues A, Baron S, Ferreira C, Vibert F, Cottart C-H, Paul J-L, Escriou V et al (2018) Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo. FASEB J 32(6):3108–3118

    CAS  PubMed  Google Scholar 

  16. Ren X, Wang N-n, Qi H, Y-y Q, C-h Z, Brown E, Kong H, Kong L (2018) Up-regulation thioredoxin inhibits advanced glycation end products-induced neurodegeneration. Cell Physiol Biochem 50(5):1673–1686

    CAS  PubMed  Google Scholar 

  17. Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A, El-Remessy AB, Fagan SC (2015) Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 51(2):766–778

    CAS  PubMed  Google Scholar 

  18. Guo Z, Yu S, Chen X, Zheng P, Hu T, Duan Z, Liu X, Liu Q et al (2018) Suppression of NLRP3 attenuates hemorrhagic transformation after delayed rtPA treatment in thromboembolic stroke rats: involvement of neutrophil recruitment. Brain Res Bull 137:229–240

    CAS  PubMed  Google Scholar 

  19. Ismael S, Zhao L, Nasoohi S, Ishrat T (2018) Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci Rep 8(1):5971

    PubMed  PubMed Central  Google Scholar 

  20. Hafez S, Hoda MN, Guo X, Johnson MH, Fagan SC, Ergul A (2015) Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA. Transl Stroke Res 6(3):171–180

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nasoohi S, Ismael S, Ishrat T (2018) Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: regulation and implication. Mol Neurobiol 55(10):7900–7920

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdelsaid MA, Matragoon S, El-Remessy AB (2013) Thioredoxin-interacting protein expression is required for VEGF-mediated angiogenic signal in endothelial cells. Antioxid Redox Signal 19(18):2199–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Duan J, Du C, Shi Y, Liu D, Ma J (2018) Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis. Int J Biochem Cell Biol 94:61–70

    CAS  PubMed  Google Scholar 

  24. Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ, Chen LC, Feng Y, Li RY et al (2017) Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep 15(1):57–64

    CAS  PubMed  Google Scholar 

  25. Kanazawa M, Takahashi T, Nishizawa M, Shimohata T (2017) Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J Atheroscler Thromb 24(3):240–253

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McBride DW, Klebe D, Tang J, Zhang JH (2015) Correcting for brain swelling’s effects on infarct volume calculation after middle cerebral artery occlusion in rats. Transl Stroke Res 6(4):323–338

    PubMed  PubMed Central  Google Scholar 

  28. Elgebaly MM, Ogbi S, Li W, Mezzetti EM, Prakash R, Johnson MH, Bruno A, Fagan SC et al (2011) Neurovascular injury in acute hyperglycemia and diabetes: a comparative analysis in experimental stroke. Transl Stroke Res 2(3):391–398

    PubMed  PubMed Central  Google Scholar 

  29. S-i O, Masutani H, Liu W, Horita H, Wang D, Kizaka-Kondoh S, Yodoi J (2006) Thioredoxin-binding protein-2-like inducible membrane protein is a novel vitamin D3 and peroxisome proliferator-activated receptor (PPAR) γ ligand target protein that regulates PPARγ signaling. Endocrinology 147(2):733–743

    Google Scholar 

  30. Qi W, Chen X, Holian J, Tan CY, Kelly DJ, Pollock CA (2009) Transcription factors Krüppel-like factor 6 and peroxisome proliferator-activated receptor-γ mediate high glucose-induced thioredoxin-interacting protein. Am J Pathol 175(5):1858–1867

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Victor N, Wanderi E, Gamboa J, Zhao X, Aronowski J, Deininger K, Lust W, Landreth G et al (2006) Altered PPARγ expression and activation after transient focal ischemia in rats. Eur J Neurosci 24(6):1653–1663

    CAS  PubMed  Google Scholar 

  32. Takizawa S, Fukuyama N, Hirabayashi H, Nakazawa H, Shinohara Y (1999) Dynamics of nitrotyrosine formation and decay in rat brain during focal ischemia-reperfusion. J Cereb Blood Flow Metab 19(6):667–672

    CAS  PubMed  Google Scholar 

  33. Li C, Wang X, Cheng F, Du X, Yan J, Zhai C, Mu J, Wang Q (2019) Geniposide protects against hypoxia/reperfusion-induced blood-brain barrier impairment by increasing tight junction protein expression and decreasing inflammation, oxidative stress, and apoptosis in an in vitro system. Eur J Pharmacol 854:224–231

    CAS  PubMed  Google Scholar 

  34. Bauer AT, Bürgers HF, Rabie T, Marti HH (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 30(4):837–848

    CAS  PubMed  Google Scholar 

  35. Fredriksson L, Lawrence DA, Medcalf RL (2017) tPA modulation of the blood-brain barrier: a unifying explanation for the pleiotropic effects of tPA in the CNS. Semin Thromb Hemost 43(2):154–168. https://doi.org/10.1055/s-0036-1586229

    Article  CAS  PubMed  Google Scholar 

  36. Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A (2014) Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 5(4):442–453. https://doi.org/10.1007/s12975-014-0336-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu R, Luo Q, You W, Jin M (2018) MicroRNA-106 attenuates hyperglycemia-induced vascular endothelial cell dysfunction by targeting HMGB1. Gene 677:142–148

    CAS  PubMed  Google Scholar 

  38. Zhang W, Wang Y, Kong Y (2019) Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthalmol Vis Sci 60(1):294–303

    CAS  PubMed  Google Scholar 

  39. Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z (2018) Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 Inflammasome pathway. J Diabetes Res. https://doi.org/10.1155/2018/8193523

    Google Scholar 

  40. Chen W, Zhao M, Zhao S, Lu Q, Ni L, Zou C, Lu L, Xu X et al (2017) Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflamm Res 66(2):157–166

    CAS  PubMed  Google Scholar 

  41. Robbins NM, Swanson RA (2014) Opposing effects of glucose on stroke and reperfusion injury: acidosis, oxidative stress, and energy metabolism. Stroke 45(6):1881–1886

    PubMed  PubMed Central  Google Scholar 

  42. Desilles JP, Syvannarath V, Ollivier V, Journe C, Delbosc S, Ducroux C, Boisseau W, Louedec L et al (2017) Exacerbation of thromboinflammation by hyperglycemia precipitates cerebral infarct growth and hemorrhagic transformation. Stroke 48(7):1932–1940. https://doi.org/10.1161/STROKEAHA.117.017080

    Article  PubMed  Google Scholar 

  43. Suzuki Y, Nagai N, Umemura K (2016) A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci 10:2. https://doi.org/10.3389/fncel.2016.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen H, Chen X, Luo Y, Shen J (2018) Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 52(11–12):1220–1239

    CAS  PubMed  Google Scholar 

  45. Wang X, Tsuji K, Lee S-R, Ning M, Furie KL, Buchan AM, Lo EH (2004) Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke 35(11_suppl_1):2726–2730

    CAS  PubMed  Google Scholar 

  46. Won SJ, Tang XN, Suh SW, Yenari MA, Swanson RA (2011) Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by increasing superoxide production. Ann Neurol 70(4):583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zuo W, Chen J, Zhang S, Tang J, Liu H, Zhang D, Chen N (2014) IMM-H004 prevents toxicity induced by delayed treatment of t PA in a rat model of focal cerebral ischemia involving PKA-and PI 3 K-dependent A kt activation. Eur J Neurosci 39(12):2107–2118

    PubMed  Google Scholar 

  48. Ai Q-D, Chen C, Chu S-F, Zhang Z, Luo Y, Guan F-F, Lin M-Y, Liu D et al (2019) IMM-H004 therapy for permanent focal ischemic cerebral injury via CKLF1/CCR4-mediated NLRP3 inflammasome activation. Transl Res 212:36–53

    CAS  PubMed  Google Scholar 

  49. Victor NA, Wanderi EW, Gamboa J, Zhao X, Aronowski J, Deininger K, Lust WD, Landreth GE et al (2006) Altered PPARgamma expression and activation after transient focal ischemia in rats. Eur J Neurosci 24(6):1653–1663. https://doi.org/10.1111/j.1460-9568.2006.05037.x

    Article  CAS  PubMed  Google Scholar 

  50. Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y (2015) HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation 12(1):137

    PubMed  PubMed Central  Google Scholar 

  51. Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT-H, Taxman DJ, Duncan JA, Ting JP-Y (2009) NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and-independent pathways. J Immunol 183(3):2008–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu K, Mori S, Takahashi HK, Tomono Y, Wake H, Kanke T, Sato Y, Hiraga N et al (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 21(14):3904–3916

    CAS  PubMed  Google Scholar 

  53. Song Y, Jun J-H, Shin E-J, Kwak Y-L, Shin J-S, Shim J-K (2017) Effect of pregabalin administration upon reperfusion in a rat model of hyperglycemic stroke: mechanistic insights associated with high-mobility group box 1. PLoS One 12(2):e0171147

    PubMed  PubMed Central  Google Scholar 

  54. Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, Date I, Yoshino T et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood–brain barrier from ischemia-induced disruption in rats. Stroke 42(5):1420–1428

    CAS  PubMed  Google Scholar 

  55. Li M, Chen S, Shi X, Lyu C, Zhang Y, Tan M, Wang C, Zang N et al (2018) Cell permeable HMGB1-binding heptamer peptide ameliorates neurovascular complications associated with thrombolytic therapy in rats with transient ischemic stroke. J Neuroinflammation 15(1):237–249

    PubMed  PubMed Central  Google Scholar 

  56. Yi X, Sui G, Zhou Q, Wang C, Lin J, Chai Z, Zhou J (2019) Variants in matrix metalloproteinase-9 gene are associated with hemorrhagic transformation in acute ischemic stroke patients with atherothrombosis, small artery disease, and cardioembolic stroke. Brain Behav 9(6):e01294

    PubMed  PubMed Central  Google Scholar 

  57. Shimada Y, Shimura H, Tanaka R, Yamashiro K, Koike M, Uchiyama Y, Urabe T, Hattori N (2018) Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator. PLoS One 13(5):e0198039

    PubMed  PubMed Central  Google Scholar 

  58. Zhang C, An J, Haile WB, Echeverry R, Strickland DK, Yepes M (2009) Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissue-type plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain. J Cereb Blood Flow Metab 29(12):1946–1954

    CAS  PubMed  Google Scholar 

  59. Chen S, Chen Z, Cui J, McCrary ML, Song H, Mobashery S, Chang M, Gu Z (2018) Early abrogation of gelatinase activity extends the time window for tPA thrombolysis after embolic focal cerebral ischemia in mice. eNeuro 5(3)

  60. Hafez S, Abdelsaid M, El-Shafey S, Johnson MH, Fagan SC, Ergul A (2016) Matrix metalloprotease 3 exacerbates hemorrhagic transformation and worsens functional outcomes in hyperglycemic stroke. Stroke 47(3):843–851

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hafez S, Abdelsaid M, Fagan SC, Ergul A (2018) Peroxynitrite-induced tyrosine nitration contributes to matrix metalloprotease-3 activation: relevance to hyperglycemic ischemic brain injury and tissue plasminogen activator. Neurochem Res 43(2):259–266

    CAS  PubMed  Google Scholar 

  62. Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM (2018) SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One 13(4):e0195526

    PubMed  PubMed Central  Google Scholar 

  63. Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A (2007) Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci 48(9):4360–4367

    PubMed  Google Scholar 

  64. Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ et al (2013) VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 62(11):3863–3873

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Won S, Lee JH, Wali B, Stein DG, Sayeed I (2014) Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF–MMP pathway. J Cereb Blood Flow Metab 34(1):72–80

    CAS  PubMed  Google Scholar 

  66. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625

    CAS  PubMed  Google Scholar 

  67. Caprnda M, Kubatka P, Saxena S, Valaskova J, Stefanickova J, Kobyliak N, Zulli A, Kruzliak P (2017) The impact of hyperglycemia on VEGF secretion in retinal endothelial cells. Folia Med 59(2):183–189

    CAS  Google Scholar 

  68. Farrell MR, Rogers LK, Liu Y, Welty SE, Tipple TE (2010) Thioredoxin-interacting protein inhibits hypoxia-inducible factor transcriptional activity. Free Radic Biol Med 49(9):1361–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dunn LL, Simpson PJ, Prosser HC, Lecce L, Yuen GS, Buckle A, Sieveking DP, Vanags LZ et al (2014) A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes 63(2):675–687

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S et al (2015) GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 18(4):521–530

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Muneer PA, Alikunju S, Szlachetka AM, Murrin LC, Haorah J (2011) Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener 6(1):23

    PubMed  PubMed Central  Google Scholar 

  72. Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165(4):882–895

    CAS  PubMed  Google Scholar 

  73. Schüler R, Seebeck N, Osterhoff MA, Witte V, Flöel A, Busjahn A, Jais A, Brüning JC et al (2018) VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: consequences for cognitive function in humans. Mol Metab 11:129–136

    PubMed  PubMed Central  Google Scholar 

  74. Korninger C, Collen D (1981) Studies on the specific fibrinolytic effect of human extrinsic (tissue-type) plasminogen activator in human blood and in various animal species in vitro. Thromb Haemost 46(02):561–565

    CAS  PubMed  Google Scholar 

  75. Thielen L, Chen J, Xu G, Jing G, Grayson T, Jo S, Shalev A (2018) Novel small molecule TXNIP inhibitor protects against diabetes. Diabetes 67(Supplement 1). https://doi.org/10.2337/db18-87-OR

    Google Scholar 

Download references

Funding

This work was supported by National Institute of Health: R01-NS097800 (TI); startup funds: Department of Anatomy and Neurobiology, UTHSC Memphis TN (TI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tauheed Ishrat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismael, S., Nasoohi, S., Yoo, A. et al. Tissue Plasminogen Activator Promotes TXNIP-NLRP3 Inflammasome Activation after Hyperglycemic Stroke in Mice. Mol Neurobiol 57, 2495–2508 (2020). https://doi.org/10.1007/s12035-020-01893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01893-7

Keywords

Navigation