Skip to main content

Advertisement

Log in

Regulated Necrosis in Glaucoma: Focus on Ferroptosis and Pyroptosis

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glaucoma is one of the most common causes of irreversible blindness worldwide. This neurodegenerative disease is characterized by progressive and irreversible damage to retinal ganglion cells (RGCs) and optic nerves, which can lead to permanent loss of peripheral and central vision. To date, maintaining long-term survival of RGCs using traditional treatments, such as medication and surgery, remains challenging, as these do not promote optic nerve regeneration. Therefore, it is of great clinical and social significance to investigate the mechanisms of optic nerve degeneration in depth and find reliable targets to provide pioneering methods for the prevention and treatment of glaucoma. Regulated necrosis is a form of genetically programmed cell death associated with the maintenance of homeostasis and disease progression in vivo. An increasing body of innovative evidence has recognized that aberrant activation of regulated necrosis pathways is a common feature in neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and glaucoma, resulting in unwanted loss of neuronal cells and function. Among them, ferroptosis and pyroptosis are newly discovered forms of regulated cell death actively involved in the pathophysiological processes of RGCs loss and optic nerve injury. This was shown by a series of in vivo and in vitro studies, and these mechanisms have been emerging as a key new area of scientific research in ophthalmic diseases. In this review, we focus on the molecular mechanisms of ferroptosis and pyroptosis and their regulatory roles in the pathogenesis of glaucoma, with the aim of exploring their implications as potential therapeutic targets and providing new perspectives for better clinical decision-making in glaucoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

References

  1. Tham YC, Li X, Wong TY et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis [J]. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  2. Peng JJ, Song WT, Yao F et al (2020) Involvement of regulated necrosis in blinding diseases: focus on necroptosis and ferroptosis [J]. Exp Eye Res 191:107922

    Article  CAS  PubMed  Google Scholar 

  3. Yao F, Peng J, Zhang E et al (2023) Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma [J]. Cell Death Differ 30(1):69–81

    Article  CAS  PubMed  Google Scholar 

  4. Baudouin C, Kolko M, Melik-Parsadaniantz S et al (2021) Inflammation in glaucoma: from the back to the front of the eye, and beyond [J]. Prog Retin Eye Res 83:100916

    Article  PubMed  Google Scholar 

  5. Shestopalov VI, Spurlock M, Gramlich OW et al (2021) Immune responses in the glaucomatous retina: regulation and dynamics [J]. Cells 10(8):1973

  6. Kang JM, Tanna AP (2021) Glaucoma [J]. Med Clin North Am 105(3):493–510

    Article  PubMed  Google Scholar 

  7. Pascale A, Drago F, Govoni S (2012) Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough [J]. Pharmacol Res 66(1):19–32

    Article  PubMed  Google Scholar 

  8. Yang M, So KF, Lam WC et al (2023) Ferroptosis and glaucoma: implications in retinal ganglion cell damage and optic nerve survival [J]. Neural Regen Res 18(3):545–546

    Article  CAS  PubMed  Google Scholar 

  9. Fischer D, Leibinger M (2012) Promoting optic nerve regeneration [J]. Prog Retin Eye Res 31(6):688–701

    Article  PubMed  Google Scholar 

  10. Sanz AB, Sanchez-Niño MD, Ramos AM et al (2023) Regulated cell death pathways in kidney disease [J]. Nat Rev Nephrol 19(5):281–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tezel G, Yang X (2004) Caspase-independent component of retinal ganglion cell death, in vitro [J]. Invest Ophthalmol Vis Sci 45(11):4049–4059

    Article  PubMed  Google Scholar 

  12. Zarch AV, Toroudi HP, Soleimani M et al (2009) Neuroprotective effects of diazoxide and its antagonism by glibenclamide in pyramidal neurons of rat hippocampus subjected to ischemia-reperfusion-induced injury [J]. Int J Neurosci 119(9):1346–1361

    Article  CAS  PubMed  Google Scholar 

  13. Ettaiche M, Heurteaux C, Blondeau N et al (2001) ATP-sensitive potassium channels (K(ATP)) in retina: a key role for delayed ischemic tolerance [J]. Brain Res 890(1):118–129

    Article  CAS  PubMed  Google Scholar 

  14. Qin Q, Yu N, Gu Y et al (2022) Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury [J]. Cell Death Dis 13(5):507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Puylaert P, Zurek M, Rayner KJ et al (2022) Regulated necrosis in atherosclerosis [J]. Arterioscler Thromb Vasc Biol 42(11):1283–1306

    Article  CAS  PubMed  Google Scholar 

  16. Tonnus W, Belavgeni A, Beuschlein F et al (2021) The role of regulated necrosis in endocrine diseases [J]. Nat Rev Endocrinol 17(8):497–510

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tonnus W, Meyer C, Paliege A et al (2019) The pathological features of regulated necrosis [J]. J Pathol 247(5):697–707

    Article  CAS  PubMed  Google Scholar 

  18. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S et al (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways [J]. Nat Rev Mol Cell Biol 15(2):135–147

    Article  CAS  PubMed  Google Scholar 

  19. Linkermann A, Hackl MJ, Kunzendorf U et al (2013) Necroptosis in immunity and ischemia-reperfusion injury [J]. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 13(11):2797–2804

    Article  CAS  Google Scholar 

  20. Linkermann A, Stockwell BR, Krautwald S et al (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure [J]. Nat Rev Immunol 14(11):759–767

    Article  CAS  PubMed  Google Scholar 

  21. Kouyoumdjian A, Tchervenkov J, Paraskevas S (2022) TFNR2 in ischemia-reperfusion injury, rejection, and tolerance in transplantation [J]. Front Immunol 13:903913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao CM, Wulfmeyer VC, Chen R et al (2022) Induction of ferroptosis selectively eliminates senescent tubular cells [J]. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 22(9):2158–2168

    Article  CAS  Google Scholar 

  23. Wang S, Liao L, Wang M et al (2017) Pin1 promotes regulated necrosis induced by glutamate in rat retinal neurons via CAST/Calpain2 Pathway [J]. Front Cell Neurosci 11:425

    Article  PubMed  Google Scholar 

  24. Zhang Q, Hu XM, Zhao WJ et al (2023) Targeting necroptosis: a novel therapeutic option for retinal degenerative diseases [J]. Int J Biol Sci 19(2):658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen M, Rong R, Xia X (2022) Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases [J]. J Neuroinflammation 19(1):183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo XX, Pu Q, Hu JJ et al (2023) The role of regulated necrosis in inflammation and ocular surface diseases [J]. Exp Eye Res 233:109537

    Article  CAS  PubMed  Google Scholar 

  27. Eagle H (1955) The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture [J]. J Exp Med 102(1):37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Golberg L, Smith JP (1958) Changes associated with the accumulation of excessive amounts of iron in certain organs of the rat [J]. Br J Exp Pathol 39(1):59–73

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 [J]. Cell Death Differ 19(1):107–120

    Article  CAS  PubMed  Google Scholar 

  30. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertrand RL (2017) Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events [J]. Med Hypotheses 101:69–74

    Article  CAS  PubMed  Google Scholar 

  32. Rosin C, Bates TE, Skaper SD (2004) Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and -independent mechanisms [J]. J Neurochem 90(5):1173–1185

    Article  CAS  PubMed  Google Scholar 

  33. Yang WS, Sriramaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4 [J]. Cell 156(1–2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bersuker K, Hendricks JM, Li Z et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis [J]. Nature 575(7784):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor [J]. Nature 575(7784):693–698

    Article  CAS  PubMed  Google Scholar 

  36. Mao C, Liu X, Zhang Y et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer [J]. Nature 593(7860):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng J, Conrad M (2020) The metabolic underpinnings of ferroptosis [J]. Cell Metab 32(6):920–37

    Article  CAS  PubMed  Google Scholar 

  38. Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol 16(12):1180–1191

    Article  CAS  PubMed  Google Scholar 

  39. Meister A, Anderson ME (1983) Glutathione [J]. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  40. Rochette L, Vergely C (2016) Coronary artery disease: can aminothiols be distinguished from reactive oxygen species? [J]. Nat Rev Cardiol 13(3):128–30

    Article  CAS  PubMed  Google Scholar 

  41. Rochette L, Dogon G, Rigal E et al (2022) Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis [J]. Int J Mol Sci 24(1):449

  42. Chen X, Yu C, Kang R et al (2021) Cellular degradation systems in ferroptosis [J]. Cell Death Differ 28(4):1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu H, Ye D, Ren M et al (2021) Ferroptosis in the tumor microenvironment: perspectives for immunotherapy [J]. Trends Mol Med 27(9):856–867

    Article  CAS  PubMed  Google Scholar 

  44. Du Y, Guo Z (2022) Recent progress in ferroptosis: inducers and inhibitors [J]. Cell Death Discov 8(1):501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ursini F, Maiorino M, Brigelius-Flohé R et al (1995) Diversity of glutathione peroxidases [J]. Methods Enzymol 252:38–53

    Article  CAS  PubMed  Google Scholar 

  46. Conrad M, Proneth B (2020) Selenium: tracing another essential element of ferroptotic cell death [J]. Cell Chem Biol 27(4):409–419

    Article  CAS  PubMed  Google Scholar 

  47. Brown CW, Amante JJ, Goel HL et al (2017) The α6β4 integrin promotes resistance to ferroptosis [J]. J Cell Biol 216(12):4287–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan BY, Pang YL, Li WX et al (2021) Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4 [J]. Neural Regen Res 16(3):561–566

    Article  CAS  PubMed  Google Scholar 

  49. Vasan K, Werner M, Chandel NS (2020) Mitochondrial metabolism as a target for cancer therapy [J]. Cell Metab 32(3):341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou Y, Tao L, Zhou X et al (2021) DHODH and cancer: promising prospects to be explored [J]. Cancer Metab 9(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu J, Wang Y, Jiang R et al (2021) Ferroptosis in liver disease: new insights into disease mechanisms [J]. Cell Death Discov 7(1):276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soula M, Weber RA, Zilka O et al (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers [J]. Nat Chem Biol 16(12):1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kraft VAN, Bezjian CT, Pfeiffer S et al (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling [J]. ACS Cent Sci 6(1):41–53

    Article  CAS  PubMed  Google Scholar 

  54. Ren JX, Sun X, Yan XL et al (2020) Ferroptosis in neurological diseases [J]. Front Cell Neurosci 14:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Olivares-González L, Velasco S, Campillo I et al (2021) Retinal Inflammation. Cell Death Inherit Retin Dystrophies [J] 22(4):2096

    Google Scholar 

  56. Tang J, Zhuo Y, Li Y (2021) Effects of iron and zinc on mitochondria: potential mechanisms of glaucomatous injury [J]. Front Cell Dev Biol 9:720288

    Article  PubMed  PubMed Central  Google Scholar 

  57. Suo L, Dai W, Chen X et al (2022) Proteomics analysis of N-methyl-d-aspartate-induced cell death in retinal and optic nerves [J]. J Proteomics 252:104427

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Wen Y, Liu X et al (2022) Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury [J]. J Neuroinflammation 19(1):261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Sheng S, Wang W et al (2022) Molecular mechanisms of iron mediated programmed cell death and its roles in eye diseases [J]. Front Nutr 9:844757

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lin SC, Wang SY, Yoo C et al (2014) Association between serum ferritin and glaucoma in the South Korean population [J]. JAMA Ophthalmol 132(12):1414–1420

    Article  PubMed  Google Scholar 

  61. Williams PA, Harder JM, Foxworth NE et al (2017) Vitamin B(3) modulates mitochondrial vulnerability and prevents glaucoma in aged mice [J]. Science (New York, NY) 355(6326):756–760

    Article  CAS  Google Scholar 

  62. Tribble JR, Otmani A, Sun S et al (2021) Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction [J]. Redox Biol 43:101988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vögtle FN, Prinz C, Kellermann J et al (2011) Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization [J]. Mol Biol Cell 22(13):2135–2143

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gao M, Yi J, Zhu J et al (2019) Role of Mitochondria in Ferroptosis [J]. Mol Cell 73(2):354–63.e3

    Article  CAS  PubMed  Google Scholar 

  65. Schultz R, Witte OW, Schmeer C (2016) Increased frataxin levels protect retinal ganglion cells after acute ischemia/reperfusion in the mouse retina in vivo [J]. Invest Ophthalmol Vis Sci 57(10):4115–4124

    Article  CAS  PubMed  Google Scholar 

  66. Du J, Zhou Y, Li Y et al (2020) Identification of Frataxin as a regulator of ferroptosis [J]. Redox Biol 32:101483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ishikawa M (2013) Abnormalities in glutamate metabolism and excitotoxicity in the retinal diseases [J]. Scientifica 2013:528940

    Article  PubMed  PubMed Central  Google Scholar 

  68. Núñez MT, Hidalgo C (2019) Noxious iron-calcium connections in neurodegeneration [J]. Front Neurosci 13:48

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen Y, Khan RS, Cwanger A et al (2013) Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity [J]. J Neurosci: Off J Soc Neurosci 33(8):3582–3587

    Article  CAS  Google Scholar 

  70. Sakamoto K, Suzuki T, Takahashi K et al (2018) Iron-chelating agents attenuate NMDA-induced neuronal injury via reduction of oxidative stress in the rat retina [J]. Exp Eye Res 171:30–36

    Article  CAS  PubMed  Google Scholar 

  71. Cui QN, Bargoud AR, Ross AG et al (2020) Oral administration of the iron chelator deferiprone protects against loss of retinal ganglion cells in a mouse model of glaucoma [J]. Exp Eye Res 193:107961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang M, Wan H, Wang S et al (2020) RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells [J]. J Anat 237(1):29–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Youale J, Bigot K, Kodati B et al (2022) Neuroprotective effects of transferrin in experimental glaucoma models [J]. Int J Mol Sci 23(21):12753

  74. Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process [J]. J Biol Chem 261(16):7123–7126

    Article  CAS  PubMed  Google Scholar 

  75. Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis [J]. Mol Microbiol 38(1):31–40

    Article  CAS  PubMed  Google Scholar 

  76. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death [J]. Trends Microbiol 9(3):113–114

    Article  CAS  PubMed  Google Scholar 

  77. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta [J]. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  78. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  79. Ding J, Wang K, Liu W et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family [J]. Nature 535(7610):111–116

    Article  CAS  PubMed  Google Scholar 

  80. Wang Y, Gao W, Shi X et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin [J]. Nature 547(7661):99–103

    Article  CAS  PubMed  Google Scholar 

  81. Yu P, Zhang X, Liu N et al (2021) Pyroptosis: mechanisms and diseases [J]. Signal Transduct Target Ther 6(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation [J]. Nat Rev Microbiol 7(2):99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sollberger G, Strittmatter GE, Garstkiewicz M et al (2014) Caspase-1: the inflammasome and beyond [J]. Innate Immun 20(2):115–125

    Article  PubMed  Google Scholar 

  84. Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation [J]. Nature 564(7734):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen X, He WT, Hu L et al (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis [J]. Cell Res 26(9):1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu Z, Wang C, Yang J et al (2020) Caspase-1 engages full-length gasdermin d through two distinct interfaces that mediate caspase recruitment and substrate cleavage [J]. Immunity 53(1):106–14.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi J, Zhao Y, Wang Y et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS [J]. Nature 514(7521):187–192

    Article  CAS  PubMed  Google Scholar 

  88. Aglietti RA, Estevez A, Gupta A et al (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes [J]. Proc Natl Acad Sci U S A 113(28):7858–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baker PJ, Boucher D, Bierschenk D et al (2015) NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5 [J]. Eur J Immunol 45(10):2918–2926

    Article  CAS  PubMed  Google Scholar 

  90. Rühl S, Broz P (2015) Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux [J]. Eur J Immunol 45(10):2927–2936

    Article  PubMed  Google Scholar 

  91. Liu Y, Fang Y, Chen X et al (2020) Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome [J]. Sci Immunol 5(43):eaax7969

  92. Zhang Z, Zhang Y, Xia S et al (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity [J]. Nature 579(7799):415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou Z, He H, Wang K et al (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells [J]. Science 368(6494):eaaz7548

  94. Syc-Mazurek SB, Libby RT (2019) Axon injury signaling and compartmentalized injury response in glaucoma [J]. Prog Retin Eye Res 73:100769

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yang X, Zeng Q, Göktas E et al (2019) T-lymphocyte subset distribution and activity in patients with glaucoma [J]. Invest Ophthalmol Vis Sci 60(4):877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chi W, Chen H, Li F et al (2015) HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma [J]. J Neuroinflammation 12:137

    Article  PubMed  PubMed Central  Google Scholar 

  97. Puyang Z, Feng L, Chen H et al (2016) Retinal ganglion cell loss is delayed following optic nerve crush in NLRP3 knockout mice [J]. Sci Rep 6:20998

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pronin A, Pham D, An W et al (2019) Inflammasome activation induces pyroptosis in the retina exposed to ocular hypertension injury [J]. Front Mol Neurosci 12:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chi W, Li F, Chen H et al (2014) Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma [J]. Proc Natl Acad Sci U S A 111(30):11181–11186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Santiago AR, Baptista FI, Santos PF et al (2014) Role of microglia adenosine A(2A) receptors in retinal and brain neurodegenerative diseases [J]. Mediators Inflamm 2014:465694

    Article  PubMed  PubMed Central  Google Scholar 

  101. Socodato R, Portugal CC, Domith I et al (2015) c-Src function is necessary and sufficient for triggering microglial cell activation [J]. Glia 63(3):497–511

    Article  PubMed  Google Scholar 

  102. Davis BM, Crawley L, Pahlitzsch M et al (2016) Glaucoma: the retina and beyond [J]. Acta Neuropathol 132(6):807–826

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bosco A, Romero CO, Breen KT et al (2015) Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma [J]. Dis Model Mech 8(5):443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zeng HL, Shi JM (2018) The role of microglia in the progression of glaucomatous neurodegeneration- a review [J]. Int J Ophthalmol 11(1):143–149

    PubMed  PubMed Central  Google Scholar 

  105. Liu X, Huang P, Wang J et al (2016) The effect of A2A receptor antagonist on microglial activation in experimental glaucoma [J]. Invest Ophthalmol Vis Sci 57(3):776–786

    Article  CAS  PubMed  Google Scholar 

  106. Faiq MA, Wollstein G, Schuman JS et al (2019) Cholinergic nervous system and glaucoma: From basic science to clinical applications [J]. Prog Retin Eye Res 72:100767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chang KC, Sun C, Cameron EG et al (2019) Opposing effects of growth and differentiation factors in cell-fate specification [J]. Curr Biol 29(12):1963–75.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Song XY, Wu WF, Gabbi C et al (2019) Retinal and optic nerve degeneration in liver X receptor β knockout mice [J]. Proc Natl Acad Sci U S A 116(33):16507–16512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Madeira MH, Ortin-Martinez A, Nadal-Nícolas F et al (2016) Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of glaucoma [J]. Sci Rep 6:27532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ye D, Xu Y, Shi Y et al (2022) Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model [J]. J Pineal Res 73(4):e12828

    Article  CAS  PubMed  Google Scholar 

  111. Dvoriantchikova G, Degterev A, Ivanov D (2014) Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage [J]. Exp Eye Res 123:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang L, Wei X (2021) T Cell-mediated autoimmunity in glaucoma neurodegeneration [J]. Front Immunol 12:803485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dvoriantchikova G, Adis E, Lypka K et al (2023) Various forms of programmed cell death are concurrently activated in the population of retinal ganglion cells after ischemia and reperfusion [J]. Int J Mol Sci 24(12):9892

  114. Xie Y, Kang R, Klionsky DJ et al (2023) GPX4 in cell death, autophagy, and disease [J]. Autophagy 19(10):2621–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Abbas R, Larisch S (2021) Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system [J]. Cells 10(12):3465

  116. Aliabadi F, Sohrabi B, Mostafavi E et al (2021) Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy [J]. Open Biol 11(4):200390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Campello L, Esteve-Rudd J, Cuenca N et al (2013) The ubiquitin-proteasome system in retinal health and disease [J]. Mol Neurobiol 47(2):790–810

    Article  CAS  PubMed  Google Scholar 

  118. Cockram PE, Kist M, Prakash S et al (2021) Ubiquitination in the regulation of inflammatory cell death and cancer [J]. Cell Death Differ 28(2):591–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Hubei Key Laboratories Opening Project (Grant no. 2021KFY055), Natural Science Foundation of Hubei Province (Grant no. 2020CFB240), and Fundamental Research Funds for Central Universities (Grant no. 2042020kf0065).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Duan Chen, Sen Miao, Ning Yang and Ningzhi Zhang; writing—original draft preparation, Duan Chen and Sen Miao; writing—review and editing, Duan Chen, Sen Miao, Xuemei Chen, Zhiyi Wang, Pei Lin, Ning Yang, and Ningzhi Zhang; funding acquisition, Ning Yang. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ningzhi Zhang or Ning Yang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Research Involving Human Participants and/or Animal

Not applicable.

Disclaimer

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Duan Chen and Sen Miao are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Miao, S., Chen, X. et al. Regulated Necrosis in Glaucoma: Focus on Ferroptosis and Pyroptosis. Mol Neurobiol 61, 2542–2555 (2024). https://doi.org/10.1007/s12035-023-03732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03732-x

Keywords

Navigation