Skip to main content

Advertisement

Log in

Multifunctional Nanocarriers for Alzheimer’s Disease: Befriending the Barriers

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s, Parkinson’s, and Huntington’s diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood–brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), d-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Heemels MT (2016) Neurodegenerative diseases. Nature 539(7628):179. https://doi.org/10.1038/539179a

    Article  PubMed  Google Scholar 

  2. Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM (2013) Monetary costs of dementia in the United States. N Engl J Med 368(14):1326–1334. https://doi.org/10.1056/NEJMsa1204629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dhall R, Kreitzman DL (2016) Advances in levodopa therapy for Parkinson disease: review of RYTARY (carbidopa and levodopa) clinical efficacy and safety. Neurology 86(14 Suppl 1):S13-24. https://doi.org/10.1212/WNL.0000000000002510

    Article  CAS  PubMed  Google Scholar 

  4. Habib S, Singh M (2022) Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: a review. Polymers (Basel) 14(4):712. https://doi.org/10.3390/polym14040712

    Article  CAS  PubMed  Google Scholar 

  5. Pihlstrom L, Wiethoff S, Houlden H (2017) Genetics of neurodegenerative diseases: an overview. Handb Clin Neurol 145:309–323. https://doi.org/10.1016/B978-0-12-802395-2.00022-5

    Article  PubMed  Google Scholar 

  6. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hickman RA, Faustin A, Wisniewski T (2016) Alzheimer disease and its growing epidemic: risk factors, biomarkers, and the urgent need for therapeutics. Neurol Clin 34:941–953. https://doi.org/10.1016/j.ncl.2016.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cummings J, Lai TJ, Hemrungrojn S, Mohandas E, Yun Kim S, Nair G, Dash A (2016) Role of donepezil in the management of neuropsychiatric symptoms in Alzheimer’s disease and dementia with Lewy bodies. CNS Neurosci Ther 22(3):159–166. https://doi.org/10.1111/cns.12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B et al (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer’s Dement 13(1):1–7. https://doi.org/10.1016/j.jalz.2016.07.150

    Article  Google Scholar 

  10. Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, Kivipelto M (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Int Med 275:251–283. https://doi.org/10.1111/joim.12191

    Article  CAS  Google Scholar 

  11. Jellinger KA (2020) Neuropathological assessment of the Alzheimer spectrum. J Neural Transm 127:1229–1256. https://doi.org/10.1007/s00702-020-02232-9

    Article  CAS  PubMed  Google Scholar 

  12. Nisbet RM, Polanco JC, Ittner LM, Götz J (2015) Tau aggregation and its interplay with amyloid-β. Acta neuropathol 129:207–220. https://doi.org/10.1007/s00401-014-1371-2

    Article  CAS  PubMed  Google Scholar 

  13. Canevelli M, Remoli G, Bacigalupo I, Valletta M, Toccaceli Blasi M, Sciancalepore F et al (2020) Use of biomarkers in ongoing research protocols on Alzheimer’s disease. J Pers Med 10(3):68. https://doi.org/10.3390/jpm10030068

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cauwenberghe CV, Broeckhoven CV, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430. https://doi.org/10.1038/gim.2015.117

    Article  PubMed  Google Scholar 

  15. Li H, Liu CC, Zheng H, Huang TY (2018) Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease-conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 7:34. https://doi.org/10.1186/s40035-018-0139-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cummings J (2019) The role of biomarkers in Alzheimer’s disease drug development. Adv Exp Med Biol 1118:29–61. https://doi.org/10.1007/978-3-030-05542-4_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB et al (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5):539–547. https://doi.org/10.1212/WNL.0000000000002923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mobed A, Hasanzadeh M (2020) Bioassays: The best alternative for conventional methods in detection of Alzheimer’s disease biomarkers. Int J Biol Macromol 161:59–71. https://doi.org/10.1016/j.ijbiomac.2020.05.257

    Article  CAS  PubMed  Google Scholar 

  19. Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 7:F1000 Faculty Rev-1161. https://doi.org/10.12688/f1000research.14506.1

  20. Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17:1060–1065. https://doi.org/10.1038/nm.2460

    Article  CAS  PubMed  Google Scholar 

  21. Rösler M, Anand R, Cicin-Sain A, Gauthier S, Agid Y, Dal-Bianco P et al (1999) Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ 318(7184):633–638. https://doi.org/10.1136/bmj.318.7184.633

    Article  PubMed  PubMed Central  Google Scholar 

  22. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126. https://doi.org/10.1002/ana.410100203

    Article  CAS  PubMed  Google Scholar 

  23. Cummings JL, Tong G, Ballard C (2019) Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimer’s Dis 67:779–794. https://doi.org/10.3233/JAD-180766

    Article  Google Scholar 

  24. (2014) Namzaric (memantine hydrochloride extended release/donepezil hydrochloride) capsules. US Food and Drug Administration. Accessed May 17, 2016.   https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206439Orig1s000TOC.cfm

  25. Tezel G, Timur SS, Bozkurt İ, Türkoğlu ÖF, Eroğlu İ, Nemutlu E et al (2019) Snapshot on the current status of Alzheimer’s disease, treatment perspectives, in-vitro and in-vivo research studies and future opportunities. Chem Pharm Bull 67(10):1030–1041. https://doi.org/10.1248/cpb.c19-00511

    Article  CAS  Google Scholar 

  26. Haddad HW, Malone GW, Comardelle NJ, Degueure AE, Kaye AM, Kaye AD (2022) Aducanumab, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer’s disease: a comprehensive review. Health Psychol Res 10(1):31925. https://doi.org/10.52965/001c.31925

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hwang SR, Kim K (2014) Nano-enabled delivery systems across the blood–brain barrier. Arch Pharm Res 37:24–30. https://doi.org/10.1007/s12272-013-0272-6

    Article  CAS  PubMed  Google Scholar 

  28. Fessel W (2017) Concordance of several subcellular interactions initiates Alzheimer’s dementia: their reversal requires combination treatment. Am J Alzheimers Dis Other Demen 32:166–181. https://doi.org/10.1177/1533317517698790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomaszewski S, Gauthier S, Wimo A, Rosa-Neto P (2016) Combination therapy of anti-tau and anti-amyloid drugs for disease modification in early-stage Alzheimer’s disease: socio-economic considerations modeled on treatments for tuberculosis, HIV/AIDS and breast cancer. J Prev Alzheimers Dis 3:164–172. https://doi.org/10.14283/jpad.2015.85

    Article  CAS  PubMed  Google Scholar 

  30. Raikwar SP, Thangavel R, Dubova I, Ahmed ME, Selvakumar PG, Kempuraj D et al (2018) Neuro-immuno-gene- and genome-editing-therapy for Alzheimer’s disease: are we there yet? J Alzheimers Dis 65(2):321–344. https://doi.org/10.3233/JAD-180422

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ahlawat J, Henriquez G, Narayan M (2018) Enhancing the delivery of chemotherapeutics: role of biodegradable polymeric nanoparticles. Molecules 23(9):2157. https://doi.org/10.3390/molecules23092157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A (2020) Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater 30(35):2003054. https://doi.org/10.1002/adfm.202003054

    Article  CAS  Google Scholar 

  33. Indrit SEKO, Şahin A, Tonbul H, Çapan Y (2020) Brain-targeted nanoparticles to overcome the blood-brain barrier. J Pharm Technol 1(1):25–39. https://doi.org/10.37662/jpt.2020.4

    Article  Google Scholar 

  34. Ghazy E, Rahdar A, Barani M, Kyzas GZ (2020) Nanomaterials for Parkinson disease: recent progress. J Mol Struct 129698. https://doi.org/10.1016/j.molstruc.2020.129698

  35. Shah A, Aftab S, Nisar J, Ashiq MN, Iftikhar FJ (2021) Nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 62:102426. https://doi.org/10.1016/j.jddst.2021.102426

    Article  CAS  Google Scholar 

  36. Pathak K, Mishra SK, Porwal A, Bahadur S (2021) Nanocarriers for Alzheimer’s disease: research and patent update. J Appl Pharm Sci 11(3):001–021. https://doi.org/10.7324/JAPS.2021.110301

    Article  CAS  Google Scholar 

  37. Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM (2010) Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):35–47. https://doi.org/10.1002/wnan.59

    Article  CAS  PubMed  Google Scholar 

  38. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8:76–103. https://doi.org/10.1021/nn405077y

    Article  CAS  PubMed  Google Scholar 

  39. Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B (2008) Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200:159–168. https://doi.org/10.1016/j.brainres.2008.01.039

    Article  CAS  PubMed  Google Scholar 

  40. Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ (2005) Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 59(2):263–272. https://doi.org/10.1016/j.ejpb.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  41. Yang R, Zheng Y, Wang Q, Zhao L (2018) Curcumin-loaded chitosan-bovine serum albumin nanoparticles potentially enhanced Abeta 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res Lett 13(1):330. https://doi.org/10.1186/s11671-018-2759-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baysal I, Ucar G, Gultekinoglu M, Ulubayram K, Yabanoglu-Ciftci S (2017) Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm (Vienna) 124(1):33–45. https://doi.org/10.1007/s00702-016-1527-4

    Article  CAS  PubMed  Google Scholar 

  43. Hanafy AS, Farid RM, Helmy MW, ElGamal SS (2016) Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv 23(8):3111–3122. https://doi.org/10.3109/10717544.2016.1153748

    Article  CAS  PubMed  Google Scholar 

  44. Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H et al (2018) Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 13:705–718. https://doi.org/10.2147/IJN.S151474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaur S, Manhas P, Swami A, Bhandari R, Sharma KK, Jain R et al (2018) Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues. Chem Eng J 346:630–639. https://doi.org/10.1016/j.cej.2018.03.176

    Article  CAS  Google Scholar 

  46. Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma MJ, Solans C (2015) Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale 7(28):12076–12084. https://doi.org/10.1039/c5nr03474d

    Article  CAS  PubMed  Google Scholar 

  47. Aghamiri S, Noofeli M, Saffarian P, Salehi Najafabadi Z, Goudarzi HR (2022) Investigating preparation and characterisation of diphtheria toxoid-loaded on sodium alginate nanoparticles. IET Nanobiotechnol 16(5):199–209. https://doi.org/10.1049/nbt2.12088

    Article  PubMed  PubMed Central  Google Scholar 

  48. Casadomé-Perales Á, Matteis L, Alleva M, Infantes-Rodríguez C, Palomares-Pérez I, Saito T et al (2019) Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules. Nanomedicine (Lond) 14(18):2409–2422. https://doi.org/10.2217/nnm-2018-0496

    Article  CAS  PubMed  Google Scholar 

  49. Fernandes J, Ghate MV, Basu Mallik S, Lewis SA (2018) Amino acid conjugated chitosan nanoparticles for the brain targeting of a model dipeptidyl peptidase-4 inhibitor. Int J Pharm 547(1–2):563–571. https://doi.org/10.1016/j.ijpharm.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Z, Dong X, Sun Y (2018) Charge effects of self-assembled chitosan-hyaluronic acid nanoparticles on inhibiting amyloid β-protein aggregation. Carbohydrate Res 461:11–18. https://doi.org/10.1016/j.carres.2018.03.001

    Article  CAS  Google Scholar 

  51. Cardia MC, Carta AR, Caboni P, Maccioni AM, Erbì S et al (2019) Trimethyl chitosan hydrogel nanoparticles for progesterone delivery in neurodegenerative disorders. Pharmaceutics 11(12):657. https://doi.org/10.3390/pharmaceutics11120657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuo YC, Rajesh R (2017) Targeted delivery of rosmarinic acid across the blood-brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. Int J Pharm 528(1–2):228–241. https://doi.org/10.1016/j.ijpharm.2017.05.039

    Article  CAS  PubMed  Google Scholar 

  53. Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY et al (2018) A self-destructive nanosweeper that captures and clears amyloid beta-peptides. Nat Commun 9(1):1802. https://doi.org/10.1038/s41467-018-04255-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B, Giunchedi P, Gavini E (2017) Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces 152:296–301. https://doi.org/10.1016/j.colsurfb.2017.01.031

    Article  CAS  PubMed  Google Scholar 

  55. Zameer S, Ali J, Vohora D, Najmi AK, Akhtar M (2021) Development, optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer’s disease in intracerebroventricular streptozotocin model for brain delivery. J Drug Target 29(2):199–216. https://doi.org/10.1080/1061186X.2020.1817041

    Article  CAS  PubMed  Google Scholar 

  56. Doolaanea AA, Mansor N’, Mohd Nor NH, Mohamed F (2016) Co-encapsulation of Nigella sativa oil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. J Microencapsul 33(2):114–126.https://doi.org/10.3109/02652048.2015.1134689

  57. Zhang X, Zhong M, Zhao P, Zhang X, Li Y, Wang X et al (2019) Screening a specific Zn(ii)-binding peptide for improving the cognitive decline of Alzheimer’s disease in APP/PS1 transgenic mice by inhibiting Zn2+-mediated amyloid protein aggregation and neurotoxicity. Biomater Sci 7(12):5197–5210. https://doi.org/10.1039/c9bm00676a

    Article  CAS  PubMed  Google Scholar 

  58. Vicente-Zurdo D, Romero-Sánchez I, Rosales-Conrado N, León-González ME, Madrid Y (2020) Ability of selenium species to inhibit metal-induced Aβ aggregation involved in the development of Alzheimer’s disease. Anal Bioanal Chem 412(24):6485–6497. https://doi.org/10.1007/s00216-020-02644-2

    Article  CAS  PubMed  Google Scholar 

  59. Su W, Xu W, Liu E, Su W, Polyakov NE (2023) Improving the treatment effect of carotenoids on Alzheimer’s disease through various nano-delivery systems. Int J Mol Sci 24(8):7652. https://doi.org/10.3390/ijms24087652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hassan N, Cordero ML, Sierpe R, Almada M, Juárez J, Valdez M et al (2018) Peptide functionalized magneto-plasmonic nanoparticles obtained by microfluidics for inhibition of β-amyloid aggregation. J Mater Chem B 6:5091–5099. https://doi.org/10.1039/C8TB00206A

    Article  CAS  PubMed  Google Scholar 

  61. Topal GR, Mészáros M, Porkoláb G, Szecskó A, Polgár TF, Siklós L et al (2021) ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier. Pharmaceutics 13(1):38. https://doi.org/10.3390/pharmaceutics13010038

    Article  CAS  Google Scholar 

  62. Zhang H, Zhao Y, Yu M, Zhao Z, Liu P, Cheng H et al (2019) Reassembly of native components with donepezil to execute dual-missions in Alzheimer’s disease therapy. J Control Release 296:14–28. https://doi.org/10.1016/j.jconrel.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  63. Fernández-de-Retana S, Cano-Sarabia M, Marazuela P, Sánchez-Quesada JL, Garcia-Leon A, Montañola A et al (2017) Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral β-amyloidosis. Sci Rep 7(1):14637. https://doi.org/10.1038/s41598-017-15215-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dos Santos RB, Kanekiyo T, Singh J (2019) ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm Res 36(11):161. https://doi.org/10.1007/s11095-019-2691-7

    Article  CAS  Google Scholar 

  65. Song Q, Song H, Xu J, Huang J, Hu M, Gu X et al (2016) Biomimetic ApoE-reconstituted high density lipoprotein nanocarrier for blood-brain barrier penetration and amyloid beta-targeting drug delivery. Mol Pharm 13(11):3976–3987. https://doi.org/10.1021/acs.molpharmaceut.6b00781

    Article  CAS  PubMed  Google Scholar 

  66. Gutiérrez-Carcedo P, Navalón S, Simó R, Setoain X, Aparicio-Gómez C, Abasolo I et al (2020) Alteration of the mitochondrial effects of ceria nanoparticles by gold: an approach for the mitochondrial modulation of cells based on nanomedicine. Nanomaterials 10(4):744. https://doi.org/10.3390/nano10040744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sharma N, Banerjee R, Davis RL (2023) Early mitochondrial defects in the 5xFAD mouse model of Alzheimer’s disease. J Alzheimers Dis 91(4):1323–1338. https://doi.org/10.3233/JAD-220884

    Article  CAS  PubMed  Google Scholar 

  68. Kim D, Kwon HJ, Hyeon T (2019) Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid-β in Alzheimer’s disease. Adv Mater 31(19):e1807965. https://doi.org/10.1002/adma.201807965

    Article  CAS  PubMed  Google Scholar 

  69. Huang Y, Chang Y, Liu L, Wang J (2021) Nanomaterials for modulating the aggregation of β-amyloid peptides. Molecules 26(14):4301. https://doi.org/10.3390/molecules26144301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu D, Ma M, Liu Z, Pi Z, Du X, Ren J, Qu X (2020) MOF-encapsulated nanozyme enhanced siRNA combo: control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer’s disease model. Biomaterials 255:120160. https://doi.org/10.1016/j.biomaterials.2020.120160

    Article  CAS  PubMed  Google Scholar 

  71. Karimzadeh M, Rashidi L, Ganji F (2017) Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm 43(4):628–636. https://doi.org/10.1080/03639045.2016.1275668

    Article  CAS  PubMed  Google Scholar 

  72. Yang X, He C, Li J, Chen H, Ma Q, Sui X et al (2014) Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett 229(1):240–249. https://doi.org/10.1016/j.toxlet.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  73. Halevas E, Nday CM, Salifoglou A (2016) Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells. J Inorg Biochem 163:240–249. https://doi.org/10.1016/j.jinorgbio.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  74. Xu Y, Zhao M, Zhou D, Zheng T, Zhang H (2021) The application of multifunctional nanomaterials in Alzheimer’s disease: a potential theranostics strategy. Biomed Pharmacother 137:111360. https://doi.org/10.1016/j.biopha.2021.111360

    Article  CAS  PubMed  Google Scholar 

  75. Nday CM, Halevas E, Jackson GE, Salifoglou A (2015) Quercetin encapsulation in modified silica nanoparticles: potential use against Cu(II)-induced oxidative stress in neurodegeneration. J Inorg Biochem 145:51–64. https://doi.org/10.1016/j.jinorgbio.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  76. Nday CM, Eleftheriadou D, Jackson G (2019) Magnetic chrysin silica nanomaterials behavior in an amyloidogenic environment. Hell J Nucl Med 22:42–50

    PubMed  Google Scholar 

  77. Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J (2016) Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater 46:177–190. https://doi.org/10.1016/j.actbio.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  78. Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 25(1):307–320. https://doi.org/10.1080/10717544.2018.1428243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matias AC, Matos J, Dohmen RJ, Ramos PC (2023) Hsp70 and Hsp110 chaperones promote early steps of proteasome assembly. Biomolecules 13(1):11. https://doi.org/10.3390/biom13010011

    Article  CAS  Google Scholar 

  80. Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A et al (2017) Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. Elife 6:e28401. https://doi.org/10.7554/eLife.28401

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bousejra-ElGarah F, Bijani C, Coppel Y, Faller P, Hureau C (2011) Iron(II) binding to amyloid-β, the Alzheimer’s peptide. Inorg Chem 50(18):9024–9030. https://doi.org/10.1021/ic201233b

    Article  CAS  PubMed  Google Scholar 

  82. Agrawal M, Ajazuddin TDK, Saraf S, Saraf S, Antimisiaris SG et al (2017) Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release 260:61–77. https://doi.org/10.1016/j.jconrel.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  83. Ross C, Taylor M, Fullwood N, Allsop D (2018) Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 13:8507–8522. https://doi.org/10.2147/IJN.S183117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kuo YC, Chen CL, Rajesh R (2019) Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater 87:207–222. https://doi.org/10.1016/j.actbio.2019.01.065

    Article  CAS  PubMed  Google Scholar 

  85. Dos Santos RB, Lakkadwala S, Kanekiyo T, Singh J (2019) Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomedicine 14:6497–6517. https://doi.org/10.2147/IJN.S215941

    Article  Google Scholar 

  86. Sun X, Chen Y, Zhao H, Qiao G, Liu M, Zhang C et al (2018) Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug Deliv 25(1):1718–1727. https://doi.org/10.1080/10717544.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bender HR, Kane S, Zabel MD (2016) Delivery of therapeutic siRNA to the CNS using cationic and anionic liposomes. J Vis Exp 113:54106. https://doi.org/10.3791/54106

    Article  CAS  Google Scholar 

  88. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296. https://doi.org/10.1016/j.apsb.2016.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  89. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581. https://doi.org/10.1016/j.ceb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  90. Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M (2020) Exosomes: current use and future applications. Clin Chim Acta 500:226–232. https://doi.org/10.1016/j.cca.2019.10.022

    Article  CAS  PubMed  Google Scholar 

  91. Johnstone RM (2005) Revisiting the road to the discovery of exosomes. Blood Cells Mol Dis 34(3):214–219. https://doi.org/10.1016/j.bcmd.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  92. Qin J, Xu Q (2014) Functions and application of exosomes. Acta Pol Pharm 71(4):537–543

    PubMed  Google Scholar 

  93. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98. https://doi.org/10.1016/S1474-4422(10)70245-3

    Article  CAS  PubMed  Google Scholar 

  94. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72(6):971–83. https://doi.org/10.1016/0092-8674(93)90585-e

  95. Sah DW, Aronin N (2011) Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 121(2):500–507. https://doi.org/10.1172/JCI45130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K et al (2016) Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol Ther 24(10):1836–1847. https://doi.org/10.1038/mt.2016.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lewis J, Melrose H, Bumcrot D, Hope A, Zehr C, Lincoln S et al (2008) In vivo silencing of alpha-synuclein using naked siRNA. Mol Neurodegener 3:19. https://doi.org/10.1186/1750-1326-3-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M et al (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29(12):1476–1485. https://doi.org/10.1002/mds.25978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bramlett HM, Dietrich WD (2015) Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma 32(23):1834–1848. https://doi.org/10.1089/neu.2014.3352

    Article  PubMed  PubMed Central  Google Scholar 

  100. Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 10:5. https://doi.org/10.1186/1479-5876-10-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qu Y, Franchi L, Nunez G, Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179(3):1913–1925. https://doi.org/10.4049/jimmunol.179.3.1913

    Article  CAS  PubMed  Google Scholar 

  102. de Rivero Vaccari JP, Brand F, Adamczak S, Lee SW, Perez-Barcena J, Wang MY et al (2016) Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem 136(Suppl 1):39–48. https://doi.org/10.1111/jnc.13036

    Article  CAS  PubMed  Google Scholar 

  103. Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88. https://doi.org/10.1016/j.semcdb.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  104. Bonafede R, Scambi I, Peroni D, Potrich V, Boschi F, Benati D et al (2016) Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis. Exp Cell Res 340(1):150–158. https://doi.org/10.1016/j.yexcr.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  105. Hu G, Liao K, Niu F, Yang L, Dallon BW et al (2018) Astrocyte EV-induced lincRNA-Cox2 regulates microglial phagocytosis: implications for morphine-mediated neurodegeneration. Mol Ther Nucleic Acids 13:450–463. https://doi.org/10.1016/j.omtn.2018.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ren X, Zhao Y, Xue F, Zheng Y, Huang H, Wang W et al (2019) Exosomal DNA aptamer targeting alpha-synuclein aggregates reduced neuropathological deficits in a mouse Parkinson’s disease model. Mol Ther Nucleic Acids 17:726–740. https://doi.org/10.1016/j.omtn.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. So S, Lodge TP (2016) Size control and fractionation of ionic liquid filled polymersomes with glassy and rubbery bilayer membranes. Langmuir 32(19):4959–4968. https://doi.org/10.1021/acs.langmuir.6b00946

    Article  CAS  PubMed  Google Scholar 

  108. Leeand JS, Feijen J (2012) Polymersomes for drug delivery: design, formation and characterization. J Control Release 161(2):473–483. https://doi.org/10.1016/j.jconrel.2011.10.005

    Article  CAS  Google Scholar 

  109. Jia T, Sun Z, Lu Y, Gao J, Zou H, Xie F et al (2016) A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-beta1-42-injected mice. Int J Nanomedicine 11:3765–3775. https://doi.org/10.2147/IJN.S94622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kandil R, Merkel OM (2019) Recent progress of polymeric nanogels for gene delivery. Curr Opin Colloid Interface Sci 39:11–23. https://doi.org/10.1016/j.cocis.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Almutairi MCA (2016) Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. Mater Horiz 3(1):21–40. https://doi.org/10.1039/c5mh00161g

    Article  PubMed  Google Scholar 

  112. Chen W, Zou Y, Zhong Z, Haag R (2017) Cyclo(RGD)-decorated reduction-responsive nanogels mediate targeted chemotherapy of integrin overexpressing human glioblastoma in vivo. Small 13(6). https://doi.org/10.1002/smll.201601997

  113. Tsao CT, Kievit FM, Ravanpay A, Erickson AE, Jensen MC (2014) Thermoreversible poly(ethylene glycol)-g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy. Biomacromol 15(7):2656–2662. https://doi.org/10.1021/bm500502n

    Article  CAS  Google Scholar 

  114. Bi Y, Yang X, Zhang T, Liu Z, Zhang X, Lu J et al (2015) Design, synthesis, nitric oxide release and antibacterial evaluation of novel nitrated ocotillol-type derivatives. Eur J Med Chem 101:71–80. https://doi.org/10.1016/j.ejmech.2015.06.021

    Article  CAS  PubMed  Google Scholar 

  115. Song B, Song J, Zhang S, Anderson MA, Ao Y, Yang CY et al (2012) Sustained local delivery of bioactive nerve growth factor in the central nervous system via tunable diblock copolypeptide hydrogel depots. Biomaterials 33(35):9105–9116. https://doi.org/10.1016/j.biomaterials.2012.08.060

    Article  CAS  PubMed  Google Scholar 

  116. Aderibigbe BA, Naki T (2018) Design and efficacy of nanogels formulations for intranasal administration. Molecules 23(6). https://doi.org/10.3390/molecules23061241

  117. Kim B, Feldman EL (2015) Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 47:e149. https://doi.org/10.1038/emm.2015.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Picone P, Sabatino MA, Ditta LA, Amato A, San Biagio PL, Mule F et al (2018) Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release 270:23–36. https://doi.org/10.1016/j.jconrel.2017.11.040

    Article  CAS  PubMed  Google Scholar 

  119. Picone P, Ditta LA, Sabatino MA, Militello V, San Biagio PL et al (2016) Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials 80:179–194. https://doi.org/10.1016/j.biomaterials.2015.11.057

    Article  CAS  PubMed  Google Scholar 

  120. Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104(10):3544–3556. https://doi.org/10.1002/jps.24557

    Article  CAS  PubMed  Google Scholar 

  121. Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM (2014) Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSci Tech 15(6):1598–1602. https://doi.org/10.1208/s12249-014-0189-5

    Article  CAS  Google Scholar 

  122. Hu KL, Mei N, Feng L, Jiang XG (2009) Hydrophilic nasal gel of lidocaine hydrochloride. 2nd communication: improved bioavailability and brain delivery in rats with low ciliotoxicity. Arzneimittelforschung 59(12):635–640. https://doi.org/10.1055/s-0031-1296452

    Article  CAS  PubMed  Google Scholar 

  123. Haque S, Md S, Sahni JK, Ali J, Baboota S (2014) Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res 48(1):1–12. https://doi.org/10.1016/j.jpsychires.2013.10.011

    Article  PubMed  Google Scholar 

  124. Tonda-Turo C, Herva M, Chiono V, Ciardelli G, Spillantini MG (2018) Influence of drug-carrier polymers on alpha-synucleinopathies: a neglected aspect in new therapies development. Biomed Res Int 2018:4518060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cook DJ, Nguyen C, Chun HN, Llorente IL, Chiu AS, Machnicki M et al (2017) Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab 37(3):1030–1045. https://doi.org/10.1177/0271678X16649964

    Article  CAS  PubMed  Google Scholar 

  126. Zhang S, Anderson MA, Ao Y, Khakh BS, Fan J, Deming TJ, Sofroniew MV (2014) Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system. Biomaterials 35(6):1989–2000. https://doi.org/10.1016/j.biomaterials.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  127. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890. https://doi.org/10.1073/pnas.93.20.10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kumar P, Wu H, McBride JL, Jung KE, Kim MH et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43. https://doi.org/10.1038/nature05901

    Article  CAS  PubMed  Google Scholar 

  129. Gao Y, Wang ZY, Zhang J, Zhang Y, Huo H, Wang T et al (2014) RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromol 15(3):1010–1018. https://doi.org/10.1021/bm401906p

    Article  CAS  Google Scholar 

  130. Schulze J, Hendrikx S, Schulz-Siegmund M, Aigner A (2016) Microparticulate poly(vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles. Acta Biomater 45:210–222. https://doi.org/10.1016/j.actbio.2016.08.056

    Article  CAS  PubMed  Google Scholar 

  131. Höbel S, Aigner A (2013) Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 5(5):484–501. https://doi.org/10.1002/wnan.1228

    Article  CAS  PubMed  Google Scholar 

  132. Shi LL, Lu J, Cao Y, Liu JY, Zhang XX, Zhang H et al (2017) Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Dev Ind Pharm 43(5):839–846. https://doi.org/10.1080/03639045.2016.1220571

    Article  CAS  PubMed  Google Scholar 

  133. Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C et al (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 22(2):277. https://doi.org/10.3390/molecules22020277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Montenegro L, Turnaturi R, Parenti C, Pasquinucci L (2018) Idebenone: novel strategies to improve its systemic and local efficacy. Nanomaterials 8(2):87. https://doi.org/10.3390/nano8020087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Montenegro L, Panico AM, Santagati LM, Siciliano EA, Intagliata S, Modica MN (2018) Solid lipid nanoparticles loading idebenone ester with pyroglutamic acid: in vitro antioxidant activity and in vivo topical efficacy. Nanomaterials 9(1):43. https://doi.org/10.3390/nano9010043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stockley JH, Ravid R, O’Neill C (2006) Altered beta-secretase enzyme kinetics and levels of both BACE1 and BACE2 in the Alzheimer’s disease brain. FEBS Lett 580(28–29):6550–6560. https://doi.org/10.1016/j.febslet.2006.10.076

    Article  CAS  PubMed  Google Scholar 

  137. Erel-Akbaba G, Carvalho LA, Tian T, Zinter M, Akbaba H, Obeid PJ (2019) Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano 13(4):4028–4040. https://doi.org/10.1021/acsnano.8b08177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li X, Lian Z, Wang S, Xing L, Yu J (2018) Interactions between EGFR and PD-1/PD-L1 pathway: implications for treatment of NSCLC. Cancer Lett 418:1–9. https://doi.org/10.1016/j.canlet.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  139. Bogdanowich-Knipp SJ, Jois DS, Siahaan TJ (1999) The effect of conformation on the solution stability of linear vs. cyclic RGD peptides. J Pept Res 53(5):523–9. https://doi.org/10.1034/j.1399-3011.1999.00055.x

    Article  CAS  PubMed  Google Scholar 

  140. Scuteri D, Sakurada S, Sakurada T, Tonin P, Bagetta G, Nicotera P, Corasaniti MT (2022) Requirements for translation in clinical trials of aromatherapy: the case of the essential oil of bergamot (BEO) for management of agitation in severe dementia. Curr Pharm Des 28(20):1607–1610. https://doi.org/10.2174/1381612828666220509152029

    Article  CAS  PubMed  Google Scholar 

  141. Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4(5):372–379. https://doi.org/10.1021/bc00023a012

    Article  CAS  PubMed  Google Scholar 

  142. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):247. https://doi.org/10.1186/1556-276X-9-247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Khan OF, Zaia EW, Yin H, Bogorad RL, Pelet JM, Webber MJ (2014) Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew Chem Int Ed Engl 53(52):14397–14401. https://doi.org/10.1002/anie.201408221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu X, Li G, Su Z, Jiang Z, Chen L, Wang J, Yu S, Liu Z (2013) Poly(amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells. Oncol Rep 29(4):1387–1394. https://doi.org/10.3892/or.2013.2283

    Article  CAS  PubMed  Google Scholar 

  145. Igartua DE, Martinez CS, Temprana CF, Alonso SDV, Prieto MJ (2018) PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: a biophysical and nanotoxicological characterization. Int J Pharm 544(1):191–202. https://doi.org/10.1016/j.ijpharm.2018.04.032

    Article  CAS  PubMed  Google Scholar 

  146. Qiu J, Kong L, Cao X, Li A, Wei P, Wang L et al (2018) Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials 8(3):131. https://doi.org/10.3390/nano8030131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Szwed A, Miłowska K, Michlewska S, Moreno S, Shcharbin D, Gomez-Ramirez R et al (2020) Generation dependent effects and entrance to mitochondria of hybrid dendrimers on normal and cancer neuronal cells in vitro. Biomolecules 10(3):427. https://doi.org/10.3390/biom10030427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bae Y, Thuy LT, Lee YH, Ko KS, Han J, Choi JS (2019) Polyplexes of functional PAMAM dendrimer/apoptin gene induce apoptosis of human primary glioma cells in vitro. Polymers 11(2):296. https://doi.org/10.3390/polym11020296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abourehab MA, Ahmed OA, Balata GF, Almalki WH (2018) Self-assembled biodegradable polymeric micelles to improve dapoxetine delivery across the blood-brain barrier. Int J Nanomedicine 13:3679–3687. https://doi.org/10.2147/IJN.S168148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mandracchia D, Tripodo G, Latrofa A, Dorati R (2014) Amphiphilic inulin-D-α-tocopherol succinate (INVITE) bioconjugates for biomedical applications. Carbohydr Polym 103:46–54. https://doi.org/10.1016/j.carbpol.2013.11.056

    Article  CAS  PubMed  Google Scholar 

  151. Tripodo G, Chlapanidas T, Perteghella S, Vigani B, Mandracchia D, Trapani A et al (2015) Mesenchymal stromal cells loading curcumin-INVITE-micelles: a drug delivery system for neurodegenerative diseases. Colloids Surf B Biointerfaces 125:300–308. https://doi.org/10.1016/j.colsurfb.2014.11.034

    Article  CAS  PubMed  Google Scholar 

  152. Yoon JY, Yang KJ, Park SN, Kim DK, Kim JD (2016) The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy. Int J Nanomedicine 11:6123–6134. https://doi.org/10.2147/IJN.S114241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Priya James H, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B 4(2):120–127. https://doi.org/10.1016/j.apsb.2014.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  154. Peng Y, Huang J, Xiao H, Wu T, Shuai X (2018) Codelivery of temozolomide and siRNA with polymeric nanocarrier for effective glioma treatment. Int J Nanomedicine 13:3467–3480. https://doi.org/10.2147/IJN.S164611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shi H, Sun S, Xu H, Zhao Z, Han Z, Jia J, Wu D, Lu J et al (2020) Combined delivery of temozolomide and siPLK1 using targeted nanoparticles to enhance temozolomide sensitivity in glioma. Int J Nanomedicine 15:3347–3362. https://doi.org/10.2147/IJN.S243878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang X, Hua Y, Xu G, Deng S, Yang D, Gao X (2019) Targeting EZH2 for glioma therapy with a novel nanoparticle-siRNA complex. Int J Nanomedicine 14:2637–2653. https://doi.org/10.2147/IJN.S189871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fillmore CM, Xu C, Desai PT, Berry JM, Rowbotham SP, Lin YJ (2015) EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 520(7546):239–242. https://doi.org/10.1038/nature14122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kafa H, Wang JT, Rubio N, Klippstein R, Costa PM, Hassan HA et al (2016) Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J Control Release 225:217–229. https://doi.org/10.1016/j.jconrel.2016.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bertrand Y, Currie JC, Poirier J, Demeule M, Abulrob A, Fatehi D et al (2011) Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer 105(11):1697–1707. https://doi.org/10.1038/bjc.2011.427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Turek A, Olakowska E, Borecka A, Janeczek H, Sobota M, Jaworska J et al (2016) Shape-memory terpolymer rods with 17-β-estradiol for the treatment of neurodegenerative diseases: an in vitro and in vivo study. Pharm Res 33(12):2967–2978. https://doi.org/10.1007/s11095-016-2019-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Francis NL, Bennett NK, Halikere A, Pang ZP, Moghe PV (2016) Self-assembling peptide nanofiber scaffolds for 3-D reprogramming and transplantation of human pluripotent stem cell-derived neurons. ACS Biomater Sci Eng 2(6):1030–1038. https://doi.org/10.1021/acsbiomaterials.6b00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lin G, Wang X, Yin F, Yong KT (2015) Passive tumor targeting and imaging by using mercaptosuccinic acid-coated near-infrared quantum dots. Int J Nanomedicine 10:335–345. https://doi.org/10.2147/IJN.S74805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240. https://doi.org/10.1016/j.addr.2008.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang Y, Leck KS, Ta VD, Chen R, Nalla V, Gao Y et al (2015) Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping. Adv Mater 27(1):169–175. https://doi.org/10.1002/adma.201403237

    Article  CAS  PubMed  Google Scholar 

  165. He X, Ma N (2014) An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces 124:118–131. https://doi.org/10.1016/j.colsurfb.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  166. Balan AD, Eshet H, Olshansky JH, Lee YV, Rabani E, Alivisatos AP (2017) Effect of thermal fluctuations on the radiative rate in core/shell quantum dots. Nano Lett 17(3):1629–1636. https://doi.org/10.1021/acs.nanolett.6b04816

    Article  CAS  PubMed  Google Scholar 

  167. Yang HY, Fu Y, Jang MS, Li Y, Yin WP, Ahn TK (2017) CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids Surf B Biointerfaces 155:497–506. https://doi.org/10.1016/j.colsurfb.2017.04.054

    Article  CAS  PubMed  Google Scholar 

  168. Lin G, Chen T, Zou J, Wang Y, Wang X, Li J, Huang Q, Fu Z et al (2017) Quantum dots-siRNA nanoplexes for gene silencing in central nervous system tumor cells. Front Pharmacol 8:182. https://doi.org/10.3389/fphar.2017.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bonoiu A, Mahajan SD, Ye L, Kumar R, Ding H, Yong KT et al (2009) MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. Brain Res 1282:142–155. https://doi.org/10.1016/j.brainres.2009.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Getz T, Qin J, Medintz IL, Delehanty JB, Susumu K, Dawson PE, Dawson G (2016) Quantum dot-mediated delivery of siRNA to inhibit sphingomyelinase activities in brain-derived cells. J Neurochem 139(5):872–885. https://doi.org/10.1111/jnc.13841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Walters R, Medintz IL, Delehanty JB, Stewart MH, Susumu K, Huston AL et al (2015) The role of negative charge in the delivery of quantum dots to neurons. ASN Neuro 7(4):1759091415592389. https://doi.org/10.1177/1759091415592389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 83(23):8826–8837. https://doi.org/10.1021/ac201331r

    Article  CAS  PubMed  Google Scholar 

  173. NCT03806478 (2023) https://classic.clinicaltrials.gov/ct2/show/NCT03806478. Accessed 29 June 2023

  174. Osterhage JL, Friedman KL (2009) Chromosome end maintenance by telomerase. J Biol Chem 284(24):16061–16065. https://doi.org/10.1074/jbc.R900011200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kaushik NK, Kaushik N, Wahab R, Bhartiya P, Linh NN, Khan F et al (2020) Cold atmospheric plasma and gold quantum dots exert dual cytotoxicity mediated by the cell receptor-activated apoptotic pathway in glioblastoma cells. Cancers 12(2):457. https://doi.org/10.3390/cancers12020457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kumarasamy M, Sosnik A (2021) Heterocellular spheroids of the neurovascular blood-brain barrier as a platform for personalized nanoneuromedicine. iScience 24(3):102183. https://doi.org/10.1016/j.isci.2021.102183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Marcuzzo S, Isaia D, Bonanno S, Malacarne C, Cavalcante P, Zacheo A et al (2019) FM19G11-loaded gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from ALS mice. Cells 8(3):279. https://doi.org/10.3390/cells8030279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Park SY, Yi EH, Kim Y, Park G (2019) Anti-neuroinflammatory effects of Ephedra sinica Stapf extract-capped gold nanoparticles in microglia. Int J Nanomedicine 14:2861–2877. https://doi.org/10.2147/IJN.S195218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20. https://doi.org/10.1016/s0168-3659(00)00339-4

    Article  CAS  PubMed  Google Scholar 

  180. Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O (2009) Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst 26(5):427–521. https://doi.org/10.1615/critrevtherdrugcarriersyst.v26.i5.10

    Article  CAS  PubMed  Google Scholar 

  181. Zhang L, Wang S, Zhang M, Sun J (2013) Nanocarriers for oral drug delivery. J Drug Target 21(6):515–527. https://doi.org/10.3109/1061186X.2013.789033

    Article  CAS  PubMed  Google Scholar 

  182. Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J (2012) Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 9(5):585–598. https://doi.org/10.1517/17425247.2012.668523

    Article  CAS  PubMed  Google Scholar 

  183. Gaba B, Khan T, Haider MF, Alam T, Baboota S, Parvez S, Ali J (2019) Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. Biomed Res Int 2019:2382563. https://doi.org/10.1155/2019/2382563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cunha A, Prévot G, Mousli Y, Barthélémy P, Crauste-Manciet S, Dehay B, Desvergnes V (2020) Synthesis and intracellular uptake of rhodamine-nucleolipid conjugates into a nanoemulsion vehicle. ACS Omega 5(11):5815–5823. https://doi.org/10.1021/acsomega.9b03992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mirza A, Rathore MH (2012) Human immunodeficiency virus and the central nervous system. Semin Pediatr Neurol 19(3):119–123. https://doi.org/10.1016/j.spen.2012.02.007

    Article  PubMed  Google Scholar 

  186. Yadav S, Gandham SK, Panicucci R, Amiji MM (2016) Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. Nanomedicine 12(4):987–1002. https://doi.org/10.1016/j.nano.2015.12.374

    Article  CAS  PubMed  Google Scholar 

  187. Gwak SJ, Yun Y, Yoon DH, Kim KN, Ha Y (2016) Therapeutic use of 3beta-[N-(Nʹ, Nʹ-dimethylaminoethane) carbamoyl] cholesterol-modified PLGA nanospheres as gene delivery vehicles for spinal cord injury. PLoS ONE 11(1):e0147389. https://doi.org/10.1371/journal.pone.0147389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Osterlund N, Kulkarni YS, Misiaszek AD, Wallin C, Kruger DM, Liao Q et al (2018) Amyloid-beta peptide interactions with amphiphilic surfactants: electrostatic and hydrophobic effects. ACS Chem Neurosci 9(7):1680–1692. https://doi.org/10.1021/acschemneuro.8b00065

    Article  CAS  PubMed  Google Scholar 

  189. Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O (2020) Insulin delivery from glucose-responsive, self-assembled, polyamine nanoparticles: smart “sense-and-treat” nanocarriers made easy. Chemistry 26(11):2456–2463. https://doi.org/10.1002/chem.201905075

    Article  CAS  PubMed  Google Scholar 

  190. Kose T, Vera-Aviles M, Sharp PA, Latunde-Dada GO (2019) Curcumin and (−)- Epigallocatechin-3-gallate protect murine MIN6 pancreatic beta-cells against iron toxicity and erastin-induced ferroptosis. Pharmaceuticals (Basel) 12(1):26. https://doi.org/10.3390/ph12010026

    Article  CAS  PubMed  Google Scholar 

  191. Chierchia A, Chirico N, Boeri L, Raimondi I, Riva GA, Raimondi MT et al (2017) Secretome released from hydrogel-embedded adipose mesenchymal stem cells protects against the Parkinson’s disease related toxin 6-hydroxydopamine. Eur J Pharm Biopharm 121:113–120. https://doi.org/10.1016/j.ejpb.2017.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Naser SS, Singh D, Preetam S, Kishore S, Kumar L, Nandi A et al (2023) Posterity of nanoscience as lipid nanosystems for Alzheimer’s disease regression. Mater Today Bio 21:100701. https://doi.org/10.1016/j.mtbio.2023.100701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dos Santos RB, Lakkadwala S, Kanekiyo T, Singh J (2020) Dual-modified liposome for targeted and enhanced gene delivery into mice brain. J Pharmacol Exp Ther 374(3):354–365. https://doi.org/10.1124/jpet.119.264127

    Article  CAS  Google Scholar 

  194. Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, Krinock MJ, Iyer AK (2020) Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today 25(4):718–730. https://doi.org/10.1016/j.drudis.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  195. Chen Z, Liu F, Chen Y, Liu J, Wang X, Chen AT et al (2017) Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. Adv Funct Mater 27(46):1703036. https://doi.org/10.1002/adfm.201703036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Huang L, Tang H, Sherchan P, Lenahan C, Boling W, Tang J, Zhang JH (2020) The activation of phosphatidylserine/CD36/TGF-β1 pathway prior to surgical brain injury attenuates neuroinflammation in rats. Oxid Med Cell Longev 2020:4921562. https://doi.org/10.1155/2020/4921562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rakotoarisoa M, Angelova A (2018) Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines (Basel) 5(4):126. https://doi.org/10.3390/medicines5040126

    Article  CAS  PubMed  Google Scholar 

  198. Shariare MH, Rahman M, Lubna SR, Roy RS, Abedin J, Marzan AL et al (2020) Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model. Sci Rep 10(1):6938. https://doi.org/10.1038/s41598-020-63894-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Platania CBM, Fisichella V, Fidilio A, Geraci F, Lazzara F, Leggio GM (2017) Topical ocular delivery of TGF-β1 to the back of the eye: implications in age-related neurodegenerative diseases. Int J Mol Sci 18(10):2076. https://doi.org/10.3390/ijms18102076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rodriguez-Izquierdo I, Serramia MJ, Gomez R, De La Mata FJ, Bullido MJ, Ma MF (2020) Gold nanoparticles crossing blood-brain barrier prevent HSV-1 infection and reduce herpes associated amyloid-β secretion. J Clin Med 9(1):155. https://doi.org/10.3390/jcm9010155

    Article  CAS  Google Scholar 

  201. Cheng CH, Lin KJ, Hong CT, Wu D, Chang HM, Liu CH et al (2019) Plasmon-activated water reduces amyloid burden and improves memory in animals with Alzheimer’s disease. Sci Rep 9(1):13252. https://doi.org/10.1038/s41598-019-49731-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Liu D, Li W, Jiang X, Bai S, Liu J, Liu X et al (2019) Using near-infrared enhanced thermozyme and scFv dual-conjugated Au nanorods for detection and targeted photothermal treatment of Alzheimer’s disease. Theranostics 9(8):2268–2281. https://doi.org/10.7150/thno.30649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Mujeeb AA, Alam KFB, Alshameri AWF, Jamal F, Farheen S, Kashif M et al (2019) Chaperone like attributes of biogenic fluorescent gold nanoparticles: potential to alleviate toxicity induced by intermediate state fibrils against neuroblastoma cells. Front Chem 7:787. https://doi.org/10.3389/fchem.2019.00787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Tajima Y, Ishikawa M, Maekawa K, Murayama M, Senoo Y, Nishimaki-Mogami T et al (2013) Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease. Lipids Health Dis 12:68. https://doi.org/10.1186/1476-511X-12-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pokharkar V, Suryawanshi S, Dhapte-Pawar V (2020) Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv Transl Res 10(4):1019–1031. https://doi.org/10.1007/s13346-019-00702-6

    Article  CAS  PubMed  Google Scholar 

  206. Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y (2013) Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials 34(36):9220–9226. https://doi.org/10.1016/j.biomaterials.2013.08.036

    Article  CAS  PubMed  Google Scholar 

  207. Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC (2016) Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 145:8–13. https://doi.org/10.1016/j.colsurfb.2016.04.041

    Article  CAS  PubMed  Google Scholar 

  208. Vakilinezhad MA, Amini A, Akbari Javar H, Baha’addini Beigi Zarandi BF, Montaseri H, Dinarvand R (2018) Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru 26(2):165–177. https://doi.org/10.1007/s40199-018-0221-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Polchi A, Magini A, Mazuryk J, Tancini B, Gapiński J, Patkowski A et al (2016) Rapamycin loaded solid lipid nanoparticles as a new tool to deliver mTOR inhibitors: formulation and in vitro characterization. Nanomaterials (Basel) 6(5):87. https://doi.org/10.3390/nano6050087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jiang Y, Liu C, Zhai W, Zhuang N, Han T, Ding Z (2019) The optimization design of lactoferrin loaded HupA nanoemulsion for targeted drug transport via intranasal route. Int J Nanomedicine 14:9217–9234. https://doi.org/10.2147/IJN.S214657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lima AF, Amado IR, Pires LR (2020) Poly(d, l-lactide-co-glycolide) (PLGA) nanoparticles loaded with proteolipid protein (PLP)-exploring a new administration route. Polymers (Basel) 12(12):3063. https://doi.org/10.3390/polym12123063

    Article  CAS  PubMed  Google Scholar 

  212. Del Amo L, Cano A, Ettcheto M, Souto EB, Espina M et al (2021) Surface functionalization of PLGA nanoparticles to increase transport across the BBB for Alzheimer’s disease. Appl Sci 11(9):4305. https://doi.org/10.3390/app11094305

    Article  CAS  Google Scholar 

  213. Fan S, Zheng Y, Liu X, Fang W, Chen X, Liao W et al (2018) Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 25(1):1091–1102. https://doi.org/10.1080/10717544.2018.1461955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA et al (2019) Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 301:62–75. https://doi.org/10.1016/j.jconrel.2019.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Park EK, Kim SY, Lee SB, Lee YM (2005) Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 109(1–3):158–168. https://doi.org/10.1016/j.jconrel.2005.09.039

    Article  CAS  PubMed  Google Scholar 

  216. Shao K, Huang R, Li J, Han L, Ye L, Lou J, Jiang C (2010) Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 147(1):118–126. https://doi.org/10.1016/j.jconrel.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  217. Rungta RL, Choi HB, Lin PJ, Ko RW, Ashby D, Nair J et al (2013) Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol Ther Nucleic Acids 2(12):e136. https://doi.org/10.1038/mtna.2013.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gorshkov A, Purvinsh L, Brodskaia A, Vasin A (2022) Exosomes as natural nanocarriers for RNA-based therapy and prophylaxis. Nanomaterials 12(3):524. https://doi.org/10.3390/nano12030524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Pan R, Chen D, Hou L, Hu R, Jiao Z (2023) Small extracellular vesicles: a novel drug delivery system for neurodegenerative disorders. Front Aging Neurosci 15:1184435. https://doi.org/10.3389/fnagi.2023.1184435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu W, He Z, Liang J, Zhu Y, Xu H, Yang X (2008) Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles. J Biomed Mater Res A 84(4):1018–1025. https://doi.org/10.1002/jbm.a.31205

    Article  CAS  PubMed  Google Scholar 

  221. Bae KH, Lee JY, Lee SH, Park TG, Nam YS (2013) Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv Healthc Mater 2(4):576–584. https://doi.org/10.1002/adhm.201200338

    Article  CAS  PubMed  Google Scholar 

  222. Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP et al (2018) Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat Nanotechnol 13(9):812–818. https://doi.org/10.1038/s41565-018-0179-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Scioli Montoto S, Sbaraglini ML, Talevi A, Couyoupetrou M, Di Ianni M, Pesce GO et al (2018) Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: physicochemical characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 167:73–81. https://doi.org/10.1016/j.colsurfb.2018.03.052

    Article  CAS  PubMed  Google Scholar 

  224. Gamage NH, Jing L, Worsham MJ, Ali MM (2016) Targeted theranostic approach for glioma using dendrimer-based curcumin nanoparticle. J Nanomed Nanotechnol 7(4):393. https://doi.org/10.4172/2157-7439.1000393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Jiang Y, Lv L, Shi H, Hua Y, Lv W, Wang X et al (2016) PEGylated polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma. Colloids Surf B Biointerfaces 147:242–249. https://doi.org/10.1016/j.colsurfb.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  226. Stenström P, Manzanares D, Zhang Y, Ceña V, Malkoch M (2018) Evaluation of amino-functional polyester dendrimers based on Bis-MPA as nonviral vectors for siRNA delivery. Molecules 23(8):2028. https://doi.org/10.3390/molecules23082028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Fana M, Gallien J, Srinageshwar B, Dunbar GL, Rossignol J (2020) PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: a systematic review. Int J Nanomedicine 15:2789–2808. https://doi.org/10.2147/IJN.S243155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Janiszewska J, Posadas I, Játiva P, Bugaj-Zarebska M, Urbanczyk-Lipkowska Z, Ceña V (2016) Second generation amphiphilic poly-lysine dendrons inhibit glioblastoma cell proliferation without toxicity for neurons or astrocytes. PLoS One 11(11):e0165704. https://doi.org/10.1371/journal.pone.0165704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zeng Y, Kurokawa Y, Win-Shwe TT, Zeng Q, Hirano S, Zhang Z, Sone H (2016) Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J Toxicol Sci 41(3):351–370. https://doi.org/10.2131/jts.41.351

    Article  CAS  PubMed  Google Scholar 

  230. Aso E, Martinsson I, Appelhans D, Effenberg C, Benseny-Cases N et al (2019) Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine 17:198–209. https://doi.org/10.1016/j.nano.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  231. Al-Azzawi S, Masheta D, Guildford AL, Phillips G, Santin M (2018) Dendrimeric poly(epsilon-lysine) delivery systems for the enhanced permeability of flurbiprofen across the blood-brain barrier in Alzheimer’s disease. Int J Mol Sci 19(10):3224. https://doi.org/10.3390/ijms19103224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Singh B, Lohan S, Sandhu PS, Jain A, Mehta SK (2016) Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics. Nanobiomater Med Imaging 455–78. https://doi.org/10.1016/B978-0-323-41736-5.00015-7

  233. Lopez-Suarez L, Awabdh SA, Coumoul X, Chauvet C (2022) The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 92:131–155. https://doi.org/10.1016/j.neuro.2022.07.008

    Article  CAS  PubMed  Google Scholar 

  234. Zhang N, He L, Wu W (2016) Self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system. Neural Regen Res 11(5):717–718. https://doi.org/10.4103/1673-5374.182687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Chowdhury SM, Surhland C, Sanchez Z, Chaudhary P, Suresh Kumar MA, Lee S (2015) Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine 11(1):109–118. https://doi.org/10.1016/j.nano.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  236. CN110559454B (2022) Nano Composite Medicine for Diagnosing and Treating Alzheimer’s Disease. Google Patents. https://patents.google.com/patent/CN110559454B/en?q=alzheimer+disease+nano&oq=alzheimer+disease+nano. Accessed 29 June 2023

  237. CN108685875A (2022) A Kind of Natural Nano Grain-Pharmaceutical Composition of Anti-Alzheimer’s Disease and Its Preparation Method and Application – Google Patents. https://patents.google.com/patent/CN108685875A/en?q=alzheimer+disease+nano&oq=alzheimer+disease+nano. Accessed 29 June 2023

  238. CN110507830A (2022) A Kind of Nano-Probe and Its Preparation for Alzheimer Disease Pathogenic Protein – Google Patents. Available online at: https://patents.google.com/patent/CN110507830A/en?q=alzheimer+disease+nano&oq=alzheimer+disease+nano. Accessed 29 June 2023

  239. Castor TP (2013) Combination therapeutics and methods for the treatment of neurodegenerative and other diseases. US Patent No US10828276B2

  240. Castor TP, Alexander JS, Purdum G, Rios JD, Schrott LM, Tyler TA, Vizcaino MI (2019) Drug delivery system and method for the treatment of neuro-degenerative disease. US patent No US20130156822A1

  241. Maron R, Frenkel D, Weiner HL, Burt D (2007) Novel composition in the form of a medicament for neurological disorders. Indian Patent No. 257811

  242. Allon N, Gavish M, Veenman JA (2014) Liposomes for in vivo delivery. WO Patent No 2014/0776709 A1

  243. Cimini A, D’angelo B, Das S, Seal S (2014) Nanoparticles of cerium oxide targeted to an amyloid-beta antigen of Alzheimer’s disease and associated methods. US Patent No 2014/8877207 B2

  244. Frautschy S, Gregory C (2015) Bioavailable curcuminoid formulations for treating Alzheimer’s disease and other age-related disorders. US Patent No 2015/9192644 B2

  245. Rogers SL, Friedhoff LT (1998) Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: an interim analysis of the results of a US multicentre open label extension study. Eur Neuropsychopharmacol 8(1):67–75. https://doi.org/10.1016/s0924-977x(97)00079-5

    Article  CAS  PubMed  Google Scholar 

  246. Christodoulou C, Melville P, Scherl WF, Macallister WS, Elkins LE, Krupp LB (2006) Effects of donepezil on memory and cognition in multiple sclerosis. J Neurol Sci 245(1–2):127–136. https://doi.org/10.1016/j.jns.2005.08.021

    Article  CAS  PubMed  Google Scholar 

  247. Robinson M, Lee BY, Leonenko Z (2015) Drugs and drug delivery systems targeting amyloid-b in Alzheimer’s disease. AIMS Mol Sci 2(3):332–358. https://doi.org/10.3934/molsci.2015.3.332

    Article  CAS  Google Scholar 

  248. Tancredi V, D’Arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A, Eusebi F (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 146(2):176–178. https://doi.org/10.1016/0304-3940(92)90071-e

    Article  CAS  PubMed  Google Scholar 

  249. Sathya S, Shanmuganathan B, Saranya S, Vaidevi S, Ruckmani K, Pandima Devi K (2017) Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer’s toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif Cellsnanomed Biotechnol 25:1–12. https://doi.org/10.1080/21691401.2017.1391822

    Article  CAS  Google Scholar 

  250. Shin J, Lee S, Cha M (2017) Neuroprotective effect of single-wall carbon nanotubes with built-in peroxidase-like activity against beta-amyloid-induced neurotoxicity. Medchemcomm 8(3):625–632. https://doi.org/10.1039/C6MD00716C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Farlow MR, Miller ML, Pejovic V (2008) Treatment options in Alzheimer’s disease: maximizing benefit, managing expectations. Dement Geriatr Cogn Disord 25(5):408–422. https://doi.org/10.1159/000122962

    Article  CAS  PubMed  Google Scholar 

  252. Mutlu NB, Değim Z, Yilmaz Ş, Eşsiz D, Nacar A (2011) New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm 37(7):775–789. https://doi.org/10.3109/03639045.2010.541262

    Article  CAS  PubMed  Google Scholar 

  253. Lilienfeld S (2002) Galantamine: a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev 8:159–176. https://doi.org/10.1111/j.1527-3458.2002.tb00221.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Fazil M, Shadab BS, Sahni JK, Ali J (2012) Nanotherapeutics for Alzheimer’s disease (AD): past, present and future. J Drug Target 20(2):97–113. https://doi.org/10.3109/1061186X.2011.607499

    Article  CAS  PubMed  Google Scholar 

  255. Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C (2011) Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 152(2):208–231. https://doi.org/10.1016/j.jconrel.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  256. Pitt J, Thorner M, Brautigan D, Larner J, Klein WL (2013) Protection against the synaptic targeting and toxicity of Alzheimer’s-associated Aβ oligomers by insulin mimetic chiro-inositols. FASEB J 27(1):199–207. https://doi.org/10.1096/fj.12-211896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ciepluch K, Weber M, Katir N, Caminade AM, El Kadib A, Klajnert B, Majoral JP, Bryszewska M (2013) Effect of viologen-phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int J Biol Macromol 54:119–124. https://doi.org/10.1016/j.ijbiomac.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  258. Gauthier S, Molinuevo JL (2013) Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer’s disease. Alzheimers Dement 9(3):326–331. https://doi.org/10.1016/j.jalz.2011.11.005

    Article  PubMed  Google Scholar 

  259. Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B (2008) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70(1):75–84. https://doi.org/10.1016/j.ejpb.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  260. Soni K, Kukereja BK, Kapur M, Kohli K (2015) Lipid nanoparticles: future of oral drug delivery and their current trends and regulatory issues. Int J Curr Pharm Rev Res 7:1–18

    CAS  Google Scholar 

  261. Camps P, Formosa X, Galdeano C, Muñoz-Torrero D, Ramírez L, Gómez E et al (2009) Pyrano(3,2-c)quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds. J Med Chem 52(17):5365–5379. https://doi.org/10.1021/jm900859q

    Article  CAS  PubMed  Google Scholar 

  262. Yang G, Wang Y, Tian J, Liu JP (2013) Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS ONE 8:e74916. https://doi.org/10.1371/journal.pone.0074916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Patel PA, Patil SC, Kalaria DR, Kalia YN, Patravale VB (2013) Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm 446:16–23. https://doi.org/10.1016/j.ijpharm.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  264. Singh NA, Mandal AKA, Khan ZA (2016) Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 15:60. https://doi.org/10.1186/s12937-016-0179-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A (2016) Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Exp Opin Drug Delivery 5247:1–11. https://doi.org/10.1080/17425247.2016.1178237

    Article  CAS  Google Scholar 

  266. Li M, Zhao C, Duan T, Ren J, Qu X (2014) New insights into Alzheimer’s disease amyloid inhibition: nanosized metallo-supramolecular complexes suppress aβ-induced biosynthesis of heme and iron uptake in PC12 Cells. Adv Healthcare Mater 3:832–836. https://doi.org/10.1002/adhm.201300470

    Article  CAS  Google Scholar 

  267. Ji DK, Zhang Y, Zang Y, Li J, Chen GR, He XP, Tian H (2016) Targeted intracellular production of reactive oxygen species by a 2D molybdenum disulphide glycosheet. Adv Mater 28:9356–9363. https://doi.org/10.1002/adma.201602748

    Article  CAS  PubMed  Google Scholar 

  268. Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J, Li M (2013) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85(21):10289–10295. https://doi.org/10.1021/ac402114c

    Article  CAS  PubMed  Google Scholar 

  269. Zhang XD, Wang J, Yang J, Chen J, Shen X, Deng J et al (2016) Highly catalytic nanodots with renal clearance for radiation protection. ACS Nano 10:4511–4519. https://doi.org/10.1021/acsnano.6b00321

    Article  CAS  PubMed  Google Scholar 

  270. Pardo M, Shustermeiseles T, Levinzaidman S, Rudich A, Rudich Y (2014) Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: relation to inflammatory gene induction and antioxidant response. Environ Sci Technol 48:3457. https://doi.org/10.1021/es500065z

    Article  CAS  PubMed  Google Scholar 

  271. Bin Y, Li X, He Y, Chen S, Xiang J (2013) Amyloid-β peptide (1–42) aggregation induced by copper ions under acidic conditions. Acta Biochim Biophys Sin 45:570–577. https://doi.org/10.1093/abbs/gmt044

    Article  CAS  PubMed  Google Scholar 

  272. Han Q, Cai S, Yang L, Wang X, Qi C, Yang R, Wang C (2017) Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl Mater, Interfaces 9(25):21116–21123. https://doi.org/10.1021/acsami.7b03816

    Article  CAS  PubMed  Google Scholar 

  273. Ren C, Li D, Zhou Q, Hu X (2020) Mitochondria-targeted Tpp-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model. Biomaterials 232:119752. https://doi.org/10.1016/j.biomaterials.2019.119752

    Article  CAS  PubMed  Google Scholar 

  274. Wang X, Han Q, Liu X, Wang C, Yang R (2019) Multifunctional inhibitors of β-amyloid aggregation based on MoS2/Aunr nanocomposites with high near-infrared absorption. Nanoscale 11:9185–9919. https://doi.org/10.1039/C9NR01845J

    Article  CAS  PubMed  Google Scholar 

  275. Ghahghaei A, Shahraki S (2016) Inhibitory effect of β-casein on the amyloid fibril formation of aβ1−40 associated with Alzheimer’s disease. Int J Pept Res Ther 22:23–29. https://doi.org/10.1007/s10989-015-9482-8

    Article  CAS  Google Scholar 

  276. Keep RF, Jones HC, Drewes LR (2019) The year in review: progress in brain barriers and brain fluid research in 2018. Fluids Barriers CNS 16(1):4. https://doi.org/10.1186/s12987-019-0124-y

    Article  PubMed  PubMed Central  Google Scholar 

  277. Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M et al (2018) Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front Aging Neurosci 10:284. https://doi.org/10.3389/fnagi.2018.00284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ahmad J, Akhter S, Rizwanullah M, Khan MA, Pigeon L, Addo RT et al (2017) Nanotechnology based theranostic approaches in Alzheimer’s disease management: current status and future perspective. Curr Alzheimer Res 14(11):1164–1181. https://doi.org/10.2174/1567205014666170508121031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wiggers HJ, Zaioncz S, Cheleski J, Mainardes RM, Khalil NM (2017) Curcumin, a multitarget phytochemical: challenges and perspectives. Stud Natural Prod Chem 53:243–276. https://doi.org/10.1016/B978-0-444-63930-1.00007-7

    Article  CAS  Google Scholar 

  280. Tang M, Taghibiglou C (2017) The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimer’s disease 58(4):1003–1016. https://doi.org/10.3233/JAD-170188

    Article  CAS  Google Scholar 

  281. Maiti P, Dunbar GJ (2018) Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci 19(6):1637. https://doi.org/10.3390/ijms19061637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S (2014) Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int 2014:394264. https://doi.org/10.1155/2014/394264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Szymusiak M, Hu X, Plata PAL, Ciupinski P, Wang ZJ, Liu YJ (2016) Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int J Pharm 511(1):415–423. https://doi.org/10.1016/j.ijpharm.2016.07.027

    Article  CAS  PubMed  Google Scholar 

  284. Huo X, Zhang Y, Jin X, Li Y, Zhang L (2019) A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 190:98–102. https://doi.org/10.1016/j.jphotobiol.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  285. Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y et al (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE 7(3):e32616. https://doi.org/10.1371/journal.pone.0032616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chung IM, Subramanian U, Thirupathi P, Venkidasamy B, Samynathan R, Gangadhar BH et al (2020) Resveratrol nanoparticles: a promising therapeutic advancement over native resveratrol. Processes 8(4):458. https://doi.org/10.3390/pr8040458

    Article  CAS  Google Scholar 

  287. Zou P, Helson L, Maitra A, Stern ST, McNeil SE (2013) Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm 10(5):1977–1987. https://doi.org/10.1021/mp4000019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Zekry D, Epperson TK, Krause KH (2003) A role for NOX NADPH oxidases in Alzheimer’s disease and other types of dementia? IUBMB Life 55:307–313. https://doi.org/10.1080/1521654031000153049

    Article  CAS  PubMed  Google Scholar 

  289. Yallapu MM, Nagesh PK, Jaggi M, Chauhan SC (2015) Therapeutic applications of curcumin nanoformulations. AAPS J 17(6):1341–1356. https://doi.org/10.1208/s12248-015-9811-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C (2012) Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis 30(2):377–392. https://doi.org/10.3233/JAD-2012-112141

    Article  CAS  PubMed  Google Scholar 

  291. Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK (2011) Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis 23(1):61–77. https://doi.org/10.3233/JAD-2010-101374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR (2010) ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm 7(3):815–825. https://doi.org/10.1021/mp900306x

    Article  CAS  PubMed  Google Scholar 

  293. Palmal S, Maity AR, Singh BK, Basu S, Jana NR, Jana NR (2014) Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry 20(20):6184–6191. https://doi.org/10.1002/chem.201400079

    Article  CAS  PubMed  Google Scholar 

  294. Kakkar V, Kaur IP (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49(11):2906–2913. https://doi.org/10.1016/j.fct.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  295. Doggui S, Belkacemi A, Paka GD, Perrotte M, Pi R, Ramassamy C (2013) Curcumin protects neuronal-like cells against acrolein by restoring Akt and redox signaling pathways. Mol Nutr Food Res 57(9):1660–1670. https://doi.org/10.1002/mnfr.201300130

    Article  CAS  PubMed  Google Scholar 

  296. Baliga MS, Shivashankara AR, Venkatesh S, Bhat HB, Palatty PL, Bhandari G, Rao S (2019) Phytochemicals in the prevention of ethanol-induced hepatotoxicity: a revisit. Dietary Interventions in Liver Dis. Academic Press 79–89

  297. Cascella M, Bimonte S, Muzio M, Schiavone V, Cuomo A (2017) The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agents Cancer 12(36):1–7. https://doi.org/10.1186/s13027-017-0145-6

    Article  CAS  Google Scholar 

  298. Krupkova O, Ferguson SJ, Wuertz-Kozak K (2016) Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 37:1–12. https://doi.org/10.1016/j.jnutbio.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  299. Salem SA, Hwei NM, Bin Saim A, Ho CC, Sagap I, Singh R (2013) Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhesive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall. J Biomed Mater Res 101(8):2237–2247. https://doi.org/10.1002/jbm.a.34518

    Article  CAS  Google Scholar 

  300. Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL et al (2014) Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound. J Control Release 189:123–132. https://doi.org/10.1016/j.jconrel.2014.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Prabhakar K, Muzammil Afzal S, Surender G, Kishan V (2013) Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharm Sin B 3(5):345–353. https://doi.org/10.1016/j.apsb.2013.08.001

    Article  Google Scholar 

  302. Ohishi T, Goto S, Monira P, Isemura M (2016) Anti-inflammatory action of green tea. Anti Inflamm Anti-Allergy Agents Med Chem 15(2):74–90. https://doi.org/10.2174/1871523015666160915154443

    Article  CAS  Google Scholar 

  303. Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN (2003) Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev 43(1):1–16. https://doi.org/10.1016/s0165-0173(03)00174-7

    Article  CAS  PubMed  Google Scholar 

  304. Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI (1997) Zinc-induced Alzheimer’s Abeta1-40 aggregation is mediated by conformational factors. J Biol Chem 272(42):26464–26470. https://doi.org/10.1074/jbc.272.42.26464

    Article  CAS  PubMed  Google Scholar 

  305. Cherny RA, Barnham KJ, Lynch T, Volitakis I, Li QX, McLean CA et al (2000) Chelation and intercalation: complementary properties in a compound for the treatment of Alzheimer’s disease. J Struct Biol 130(2–3):209–216. https://doi.org/10.1006/jsbi.2000.4285

    Article  CAS  PubMed  Google Scholar 

  306. Eslami M, Nikkhah SJ, Hashemianzadeh SM, Sajadi SA (2016) The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and chitosan as efficient carriers for drug delivery: a molecular dynamics study. Eur J Pharm Sci 82:79–85. https://doi.org/10.1016/j.ejps.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  307. Martel CL, Mackic JB, Matsubara E, Governale S, Miguel C, Miao W et al (1997) Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood-brain barrier transport of circulating Alzheimer’s amyloid beta. J Neurochem 69(5):1995–2004. https://doi.org/10.1046/j.1471-4159.1997.69051995.x

    Article  CAS  PubMed  Google Scholar 

  308. Prakapenka AV, Bimonte-Nelson HA, Sirianni RW (2017) Engineering poly(lactic-co-glycolic acid) (PLGA) micro- and nano-carriers for controlled delivery of 17β-estradiol. Ann Biomed Eng 45(7):1697–1709. https://doi.org/10.1007/s10439-017-1859-8

    Article  PubMed  PubMed Central  Google Scholar 

  309. Wang Y, Balaji V, Kaniyappan S, Krüger L, Irsen S, Tepper K (2017) The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener 12(1):5. https://doi.org/10.1186/s13024-016-0143-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Al-Suhaimi EA, Nawaz M, Khan FA, Aljafary MA, Baykal A, Homeida AM (2021) Emerging trends in the delivery of nanoformulated oxytocin across blood-brain barrier. Int J Pharm 609:121141. https://doi.org/10.1016/j.ijpharm.2021.121141

    Article  CAS  PubMed  Google Scholar 

  311. Zhang Y, Zou Z, Liu S, Miao S, Liu H (2022) Nanogels as novel nanocarrier systems for efficient delivery of CNS therapeutics. Front Bioeng Biotechnol 10:954470. https://doi.org/10.3389/fbioe.2022.954470

    Article  PubMed  PubMed Central  Google Scholar 

  312. Higashida H, Furuhara K, Lopatina O, Gerasimenko M, Hori O, Hattori T et al (2022) Oxytocin dynamics in the body and brain regulated by the receptor for advanced glycation end-products, CD38, CD157, and nicotinamide riboside. Front Neurosci 16:858070. https://doi.org/10.3389/fnins.2022.858070

    Article  PubMed  PubMed Central  Google Scholar 

  313. Glat M, Skaat H, Menkes-Caspi N, Margel S, Stern EA (2013) Age-dependent effects of microglial inhibition in vivo on Alzheimer’s disease neuropathology using bioactive-conjugated iron oxide nanoparticles. J Nanobiotechnology 11:32. https://doi.org/10.1186/1477-3155-11-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C et al (2016) The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J Cell Mol Med 20(7):1392–1407. https://doi.org/10.1111/jcmm.12817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Xie B, Zhang H, Li X, Dong X, Sun Y (2017) Iminodiacetic acid-modified human serum albumin: a multifunctional agent against metal-associated amyloid β-protein aggregation and cytotoxicity. ACS Chem Neurosci 8(10):2214–2224. https://doi.org/10.1021/acschemneuro.7b00128

    Article  CAS  PubMed  Google Scholar 

  316. Jongbloed W, van Dijk KD, Mulder SD, van de Berg WD, Blankenstein MA, van der Flier W, Veerhuis R (2015) Clusterin levels in plasma predict cognitive decline and progression to Alzheimer’s disease. J Alzheimers Dis 46(4):1103–1110. https://doi.org/10.3233/JAD-150036

    Article  CAS  PubMed  Google Scholar 

  317. Matsubara E, Frangione B, Ghiso J (1995) Characterization of apolipoprotein J-Alzheimer’s A beta interaction. J Biol Chem 270(13):7563–7567. https://doi.org/10.1074/jbc.270.13.7563

    Article  CAS  PubMed  Google Scholar 

  318. Freese C, Uboldi C, Gibson MI, Unger RE, Weksler BB, Romero IA, Couraud PO, Kirkpatrick CJ (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 9:23. https://doi.org/10.1186/1743-8977-9-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Javed I, Peng G, Xing Y, Yu T, Zhao M, Kakinen A et al (2019) Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 10(1):3780. https://doi.org/10.1038/s41467-019-11762-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Hou K, Zhao J, Wang H, Li B, Li K, Shi X et al (2020) Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun 11(1):4790. https://doi.org/10.1038/s41467-020-18525-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Moore KA, Pate KM, Soto-Ortega DD, Lohse S, van der Munnik N, Lim M et al (2017) Influence of gold nanoparticle surface chemistry and diameter upon Alzheimer’s disease amyloid-beta protein aggregation. J Biol Eng 11:5. https://doi.org/10.1186/s13036-017-0047-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1):47–52. https://doi.org/10.1016/s0022-510x(98)00092-6

    Article  CAS  PubMed  Google Scholar 

  323. Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P (2019) Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol 130:515–526. https://doi.org/10.1016/j.ijbiomac.2019.02

    Article  CAS  PubMed  Google Scholar 

  324. Sastre M, Ritchie CW, Hajji N (2015) Metal ions in Alzheimer’s disease brain. JSM Alzheimers Dis Relat Dement 2:1014. https://doi.org/10.1021/acs.accounts.9b00248

    Article  CAS  Google Scholar 

  325. Markesbery WR, Ehmann WD (1999) Oxidative stress in Alzheimer disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease. Lippincott Williams & Wilkins, Philadelphia, pp 401–414

    Google Scholar 

  326. Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M et al (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 59:43–55. https://doi.org/10.1016/j.neuron.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  327. Robert A, Liu Y, Nguyen M, Meunier B (2015) Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s disease. Acc Chem Res 48(5):1332–1339. https://doi.org/10.1021/acs.accounts.5b00119

    Article  CAS  PubMed  Google Scholar 

  328. Alies B, Sasaki I, Proux O, Sayen S, Guillon E, Faller P, Hureau C (2013) Zn impacts Cu coordination to amyloid-β, the Alzheimer’s peptide, but not the ROS production and the associated cell toxicity. Chem Commun (Camb) 49(12):1214–1216. https://doi.org/10.1039/c2cc38236a

    Article  CAS  PubMed  Google Scholar 

  329. Crouch PJ, Tew DJ, Du T, Nguyen DN, Caragounis A, Filiz G et al (2009) Restored degradation of the Alzheimer’s amyloid-β peptide by targeting amyloid formation. J Neurochem 108:1198–1207. https://doi.org/10.1111/j.1471-4159.2009.05870.x

    Article  CAS  PubMed  Google Scholar 

  330. Linkous DH, Adlard PA, Wanschura PB, Conko KM, Flinn JM (2009) The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice. J Alzheimers Dis 18(3):565–579. https://doi.org/10.3233/JAD-2009-1162

    Article  CAS  PubMed  Google Scholar 

  331. Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G (2017) Advances in Alzheimer’s diagnosis and therapy: the implications of nanotechnology. Trends Biotechnol 35(10):937–953. https://doi.org/10.1016/j.tibtech.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  332. Hyung SJ, DeToma AS, Brender JR, Lee S, Vivekanandan S, Kochi A et al (2013) Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc Natl Acad Sci U S A 110(10):3743–3748. https://doi.org/10.1073/pnas.1220326110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L et al (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60(12):1685–1691. https://doi.org/10.1001/archneur.60.12.1685

    Article  PubMed  Google Scholar 

  334. LeVine H 3rd, Ding Q, Walker JA, Voss RS, Augelli-Szafran CE (2009) Clioquinol and other hydroxyquinoline derivatives inhibit Abeta(1–42) oligomer assembly. Neurosci Lett 465(1):99–103. https://doi.org/10.1016/j.neulet.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Zhang Y, Zhou M (2019) A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J Hazard Mater 362:436–450. https://doi.org/10.1016/j.jhazmat.2018.09.035

    Article  CAS  PubMed  Google Scholar 

  336. Bareggi SR, Cornelli U (2012) Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther 18:41–46. https://doi.org/10.1111/j.1755-5949.2010.00231.x

    Article  CAS  PubMed  Google Scholar 

  337. Hadavi D, Poot AA (2016) Biomaterials for the treatment of Alzheimer’s disease. Front Bioeng Biotechnol 4:49. https://doi.org/10.3389/fbioe.2016.00049

    Article  PubMed  PubMed Central  Google Scholar 

  338. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10(4):317–325. https://doi.org/10.1080/10611860290031877

    Article  CAS  PubMed  Google Scholar 

  339. Li M, Guan Y, Ding C, Chen Z, Ren J, Qu X (2016) An ultrathin graphitic carbon nitride nanosheet: a novel inhibitor of metal-induced amyloid aggregation associated with Alzheimer’s disease. J Mater Chem B 4(23):4072–4075. https://doi.org/10.1039/c6tb01215a

    Article  CAS  PubMed  Google Scholar 

  340. Liu G, Men P, Kudo W, Perry G, Smith MA (2009) Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neurosci Lett 455(3):187–190. https://doi.org/10.1016/j.neulet.2009.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Harris SA, Harris EA (2018) Molecular mechanisms for herpes simplex virus type 1 pathogenesis in Alzheimer’s disease. Front Aging Neurosci 10:48. https://doi.org/10.2147/IJN.S195218

    Article  PubMed  PubMed Central  Google Scholar 

  342. ElAli A, Rivest S (2016) Microglia in Alzheimer’s disease: a multifaceted relationship. Brain Behav Immun 55:138–150. https://doi.org/10.1016/j.bbi.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  343. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. https://doi.org/10.12703/P6-13

  344. Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB (2013) Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res 57(9):1510–1528. https://doi.org/10.1002/mnfr.201100741

    Article  CAS  PubMed  Google Scholar 

  345. Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC et al (2012) Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol 12(2):368–377. https://doi.org/10.1016/j.intimp.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  346. Songjiang Z, Lixiang W (2009) Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech 10(3):900–905. https://doi.org/10.1208/s12249-009-9279-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Wang ZY, Liu JG, Li H, Yang HM (2016) Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: a review. Am J Chin Med 44(8):1525–1541. https://doi.org/10.1142/S0192415X16500853

    Article  CAS  PubMed  Google Scholar 

  348. Kik K, Bukowska B, Sicinska P (2020) Polystyrene nanoparticles: sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut 262:114297. https://doi.org/10.1016/j.envpol.2020.114297

    Article  CAS  PubMed  Google Scholar 

  349. Liu G, Men P, Perry G, Smith MA (2009) Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. J Nanoneurosci 1:42–55. https://doi.org/10.1166/jns.2009.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S (2021) Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (bio)sensors with biomedical applications. Materials (Basel) 14(21):6319. https://doi.org/10.3390/ma14216319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B (2017) Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm 530(1–2):263–278. https://doi.org/10.1016/j.ijpharm.2017.07.080

    Article  CAS  PubMed  Google Scholar 

  352. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM (2005) Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. Neurotherapeutics 2:554–571. https://doi.org/10.1602/neurorx.2.4.554

    Article  Google Scholar 

  353. Gopalan D, Pandey A, Udupa N, Mutalik S (2020) Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: role of surface engineered nanocarriers. J Control Release 319:183–200. https://doi.org/10.1016/j.jconrel.2019.12.034

    Article  CAS  PubMed  Google Scholar 

  354. Costa PM, Wang JTW, Morfin JF, Khanum T, To W, Sosabowski J et al (2018) Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting Pittsburgh compound B (PiB)-derived ligands. Nanotheranostics 2:168. https://doi.org/10.7150/ntno.23125

    Article  PubMed  PubMed Central  Google Scholar 

  355. Fabbro A, Prato M, Ballerini L (2013) Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev 65(15):2034–2044. https://doi.org/10.1016/j.addr.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  356. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124(5):760–761. https://doi.org/10.1021/ja016954m

    Article  CAS  PubMed  Google Scholar 

  357. Bilal M, Barani M, Sabir F, Rahdar A, Kyzas GZ (2020) Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: an overview. NanoImpact 20:100251. https://doi.org/10.1016/j.impact.2020.100251

    Article  Google Scholar 

  358. Sharma A, Das J (2019) Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol 17(1):92. https://doi.org/10.1186/s12951-019-0525-8

    Article  CAS  Google Scholar 

  359. Lee BS, Lin SC, Wu WJ, Wang XY, Chang PZ, Lee CK (2009) Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J Micromech Microeng 19(6):065014. https://doi.org/10.1088/0960-1317/19/6/065014

    Article  CAS  Google Scholar 

  360. Guo Q, Shen XT, Li YY, Xu SQ (2017) Carbon nanotubes-based drug delivery to cancer and brain. J Huazhong Univ Sci Technolog Med Sci 37(5):635–641. https://doi.org/10.1007/s11596-017-1783-z

    Article  CAS  PubMed  Google Scholar 

  361. Wang X, Sun K, Tan YP, Wu SS, Zhang JS (2014) Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radic Biol Med 72:1–10. https://doi.org/10.1016/j.freeradbiomed.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  362. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  363. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI et al (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69:1712–1716. https://doi.org/10.1158/0008-5472.CAN-08-3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Guerreiro RJ, Gustafson DR, Hardy J (2012) The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol Aging 33:437–456. https://doi.org/10.1016/j.neurobiolaging.2010.03.025

    Article  CAS  PubMed  Google Scholar 

  365. Yin T, Yang L, Liu Y, Zhou X, Sun J, Liu J (2015) Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater 25:172–183. https://doi.org/10.1016/j.actbio.2015.06.035

    Article  CAS  PubMed  Google Scholar 

  366. Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater 7(4):1700831. https://doi.org/10.1002/adhm.201700831

    Article  CAS  Google Scholar 

  367. Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29(9):1604634. https://doi.org/10.1002/adma.201604634

    Article  CAS  Google Scholar 

  368. Ye Y, Hui L, Lakpa KL, Xing Y, Wollenzien H, Chen X, Zhao JX, Geiger JD (2019) Effects of silica nanoparticles on endolysosome function in primary cultured neurons1. Can J Physiol Pharmacol 97(4):297–305. https://doi.org/10.1139/cjpp-2018-0401

    Article  CAS  PubMed  Google Scholar 

  369. Javdani N, Rahpeyma SS, Ghasemi Y, Raheb J (2019) Effect of superparamagnetic nanoparticles coated with various electric charges on alpha-synuclein and beta-amyloid proteins fibrillation process. Int J Nanomedicine 14:799–808. https://doi.org/10.2147/IJN.S190354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (2013) Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 4(3):35–63. https://doi.org/10.4331/wjbc.v4.i3.35

    Article  PubMed  PubMed Central  Google Scholar 

  371. Brambilla D, Verpillot R, Le Droumaguet B, Nicolas J, Taverna M, Kóňa J et al (2012) PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano 6(7):5897–5908. https://doi.org/10.1021/nn300489k

    Article  CAS  PubMed  Google Scholar 

  372. Kiyatkin EA, Sharma HS (2009) Permeability of the blood-brain barrier depends on brain temperature. Neurosci 161(3):926–939. https://doi.org/10.1016/j.neuroscience.2009.04.004

    Article  CAS  Google Scholar 

  373. Dao P, Ye F, Liu Y, Du ZY, Zhang K, Dong CZ, Meunier B, Chen H (2017) Development of phenothiazine-based theranostic compounds that act both as inhibitors of β-amyloid aggregation and as imaging probes for amyloid plaques in Alzheimer’s disease. ACS Chem Neurosci 8(4):798–806. https://doi.org/10.1021/acschemneuro.6b00380

    Article  CAS  PubMed  Google Scholar 

  374. Manimaran M, Kannabiran K (2017) Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 64(6):401–408. https://doi.org/10.1111/lam.12730

    Article  CAS  PubMed  Google Scholar 

  375. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Electron localization determines defect formation on ceria substrates. Science 309(5735):752–755. https://doi.org/10.1126/science.1111568

    Article  CAS  PubMed  Google Scholar 

  376. Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I (2016) Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 10(2):2860–2870. https://doi.org/10.1021/acsnano.5b08045

    Article  CAS  PubMed  Google Scholar 

  377. Mir Najib Ullah SN, Afzal O, Altamimi ASA, Ather H, Sultana S, Almalki WH, Rahman M (2023) Nanomedicine in the management of Alzheimer’s disease: state-of-the-art. Biomedicines 11(6):1752. https://doi.org/10.3390/biomedicines11061752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Chopra H, Bibi S, Singh I, Kamal MA, Islam F, Alhumaydhi FA, Cavalu S (2022) Nanomedicines in the management of Alzheimer’s disease: current view and future prospects. Front Aging Neurosci 14:879114. https://doi.org/10.3389/fnagi.2022.879114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing—original draft preparation: MAA, MT, BV. Writing, editing: TT, AM, GR, MNA, SAA, OO, ND, MAB, RS, EAA-S. All authors have reviewed and approved the final version of the manuscript prior to submission.

Corresponding author

Correspondence to Muthu Thiruvengadam.

Ethics declarations

Consent for Publication

All authors have given final approval of this version and agreed to publish this article here.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.A., Tripathi, T., Venkidasamy, B. et al. Multifunctional Nanocarriers for Alzheimer’s Disease: Befriending the Barriers. Mol Neurobiol 61, 3042–3089 (2024). https://doi.org/10.1007/s12035-023-03730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03730-z

Keywords

Navigation