Skip to main content

Advertisement

Log in

Brain Fog: a Narrative Review of the Most Common Mysterious Cognitive Disorder in COVID-19

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It has been more than three years since COVID-19 impacted the lives of millions of people, many of whom suffer from long-term effects known as long-haulers. Notwithstanding multiorgan complaints in long-haulers, signs and symptoms associated with cognitive characteristics commonly known as “brain fog” occur in COVID patients over 50, women, obesity, and asthma at excessive. Brain fog is a set of symptoms that include cognitive impairment, inability to concentrate and multitask, and short-term and long-term memory loss. Of course, brain fog contributes to high levels of anxiety and stress, necessitating an empathetic response to this group of COVID patients. Although the etiology of brain fog in COVID-19 is currently unknown, regarding the mechanisms of pathogenesis, the following hypotheses exist: activation of astrocytes and microglia to release pro-inflammatory cytokines, aggregation of tau protein, and COVID-19 entry in the brain can trigger an autoimmune reaction. There are currently no specific tests to detect brain fog or any specific cognitive rehabilitation methods. However, a healthy lifestyle can help reduce symptoms to some extent, and symptom-based clinical management is also well suited to minimize brain fog side effects in COVID-19 patients. Therefore, this review discusses mechanisms of SARS-CoV-2 pathogenesis that may contribute to brain fog, as well as some approaches to providing therapies that may help COVID-19 patients avoid annoying brain fog symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable

Abbreviations

ACE2:

Angiotensin-converting enzyme 2

AD:

Alzheimer’s disease

ANA:

Antinuclear antibodies

ANCA:

Antineutrophil cytoplasmic antibodies

AOSD:

Adult-onset Still’s disease

ASD:

Autism spectrum disorders

BBB:

Blood-brain barrier

CA:

Carnosic acid

CFS:

Chronic fatigue syndrome

CNS:

Central nervous system

COVID-19:

Coronavirus disease 2019

ED:

Emergency department

DSF:

Disulfiram

FTD:

Frontotemporal dementia

GPX1:

Glutathione peroxidase 1

GSH:

Glutathione

GSTM1:

Glutathione S-transferase mu 1

IIM:

Idiopathic inflammatory myopathies

KEAP1:

Kelch-like ECH-associated protein 1

MC:

Mast cell

nEVs:

Neuron-enriched extracellular vesicles

NF-κβ:

Nuclear factor kappa beta

NFL:

Neurofilament light chain

NLRP3:

NLR family pyrin domain–containing 3

NRF2:

Nuclear factor erythroid-related factor 2

NRP1:

Neuropilin-1

OCR:

Oxygen consumption rate

OPC:

Oligodendrocyte progenitor cells

POTS:

Postural orthostatic tachycardia syndrome

ROS:

Reactive oxygen species

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SLE:

Systemic lupus erythematosus

SM:

Systemic mastocytosis

SOD:

Superoxide dismutase

SR:

Coronavirus spike protein receptor

THT:

Thioflavin T aggregation assay

References

  1. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ (2021) 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8(5):416–427

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mathern R, Senthil P, Vu N, Thiyagarajan T (2022) Neurocognitive rehabilitation in COVID-19 patients: a clinical review. South Med J 115(3):227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brielle ES, Schneidman-Duhovny D, Linial M (2020) The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor. Viruses 12(5)

  4. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glass WG, Subbarao K, Murphy B, Murphy PM (2004) Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 173(6):4030–4039

    Article  CAS  PubMed  Google Scholar 

  6. Kremer S, Lersy F, Anheim M, Merdji H, Schenck M, Oesterlé H, Bolognini F, Messie J et al (2020) Neurologic and neuroimaging findings in patients with COVID-19: a retrospective multicenter study. Neurology 95(13):e1868–e1e82

    Article  CAS  PubMed  Google Scholar 

  7. Pezzini A, Padovani A (2020) Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol 16(11):636–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro-Almagro F, Okell T, Sheerin F et al (2021) Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 31:100683

    Article  PubMed  PubMed Central  Google Scholar 

  9. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A et al (2020) Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 383(6):590–592

    Article  PubMed  Google Scholar 

  10. Heiberg KE, Heggestad AK, Jøranson N, Lausund H, Breievne G, Myrstad M, Ranhoff AH, Walle-Hansen MM et al (2022) ‘Brain fog’, guilt, and gratitude: experiences of symptoms and life changes in older survivors 6 months after hospitalisation for COVID-19. Eur Geriatr Med 13(3):695–703

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mahase E (2021) COVID-19: one in three has neurological or psychiatric condition diagnosed after COVID infection, study finds. Bmj 373:n908

    Article  PubMed  Google Scholar 

  12. Taquet M, Luciano S, Geddes JR, Harrison PJ (2021) Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 8(2):130–140

    Article  PubMed  Google Scholar 

  13. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C et al (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 77(6):683–690

    Article  PubMed  Google Scholar 

  14. Negrini F, Ferrario I, Mazziotti D, Berchicci M, Bonazzi M, de Sire A, Negrini S, Zapparoli L (2021) Neuropsychological features of severe hospitalized coronavirus disease 2019 patients at clinical stability and clues for postacute rehabilitation. Arch Phys Med Rehabil 102(1):155–158

    Article  PubMed  Google Scholar 

  15. Garg M, Maralakunte M, Garg S, Dhooria S, Sehgal I, Bhalla AS, Vijayvergiya R, Grover S et al (2021) The conundrum of ‘long-COVID-19’: a narrative review. Int J Gen Med 14:2491–2506

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sansone A, Mollaioli D, Limoncin E, Ciocca G, Bắc NH, Cao TN, Hou G, Yuan J et al (2022) The sexual long COVID (SLC): erectile dysfunction as a biomarker of systemic complications for COVID-19 long haulers. Sex Med Rev 10(2):271–285

    Article  PubMed  Google Scholar 

  17. Graham EL, Clark JR, Orban ZS, Lim PH, Szymanski AL, Taylor C, RM DB, Jia DT et al (2021) Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 “long haulers”. Ann Clin Transl Neurol 8(5):1073–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hagiya H, Otsuka Y, Otsuka F (2022) Call for correction: mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J Neurol Sci 436:120232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sacks D, Baxter B, Campbell BC, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U et al (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 13(6):612–632

    PubMed  Google Scholar 

  20. Barbato C, Di Certo MG, Gabanella F, Petrella C, Fiore M, Passananti C, Colizza A, Cavalcanti L et al (2021) Staying tuned for post-COVID-19 syndrome: looking for new research to sniff out. Eur Rev Med Pharmacol Sci 25(16):5318–5321

    CAS  PubMed  Google Scholar 

  21. Kopanczyk R, Kumar N, Papadimos T (2022) Post-acute COVID-19 syndrome for anesthesiologists: a narrative review and a pragmatic approach to clinical care. J Cardiothorac Vasc Anesth 36(8 Pt A):2727–2737

    Article  CAS  PubMed  Google Scholar 

  22. Shimohata T (2022) Neuro-COVID-19. Clin Exp Neuroimmunol 13(1):17–23

    Article  CAS  PubMed  Google Scholar 

  23. Blomberg B, Mohn KG, Brokstad KA, Zhou F, Linchausen DW, Hansen BA, Lartey S, Onyango TB et al (2021) Long COVID in a prospective cohort of home-isolated patients. Nat Med 27(9):1607–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hugon J, Queneau M, Sanchez Ortiz M et al (2022) Cognitive decline and brainstem hypometabolism in long COVID: a case series. Brain Behav 12(4):e2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ali ST, Kang AK, Patel TR et al (2022) Evolution of neurologic symptoms in non-hospitalized COVID-19 “long haulers”. Ann Clin Transl Neurol 9(7):950–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El Otmani H, Nabili S, Berrada M et al (2022) Prevalence, characteristics and risk factors in a Moroccan cohort of Long-Covid-19. Neurol Sci 43(9):5175–5180

    Article  PubMed  PubMed Central  Google Scholar 

  27. Molteni E, Sudre CH, Canas LS et al (2021) Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc Health 5(10):708–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Callan C, Ladds E, Husain L, Pattinson K, Greenhalgh T (2022) I can’t cope with multiple inputs’: a qualitative study of the lived experience of ‘brain fog’ after COVID-19. BMJ Open 12(2):e056366

    Article  PubMed  Google Scholar 

  29. Caspersen IH, Magnus P, Trogstad L (2022) Excess risk and clusters of symptoms after COVID-19 in a large Norwegian cohort. Eur J Epidemiol 37(5):539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yellumahanthi DK, Barnett B, Barnett S, Yellumahanthi S (2022) COVID-19 infection: its lingering symptoms in adults. Cureus 14(5):e24736

    PubMed  PubMed Central  Google Scholar 

  31. Bai F, Tomasoni D, Falcinella C et al (2022) Female gender is associated with long COVID syndrome: a prospective cohort study. Clin Microbiol Infect 28(4):611

    Article  Google Scholar 

  32. Asadi-Pooya AA, Akbari A, Emami A et al (2022) Long COVID syndrome-associated brain fog. J Med Virol 94(3):979–984

    Article  CAS  PubMed  Google Scholar 

  33. Nouraeinejad A (2022) A proposal to apply brain injury recovery treatments for cognitive impairment in COVID-19 survivors. Int J Neurosci:1–2

  34. Wose Kinge C, Hanekom S, Lupton-Smith A et al (2022) Persistent symptoms among frontline health workers post-acute COVID-19 infection. Int J Environ Res Public Health 19(10)

  35. Barker-Davies RM, O’Sullivan O, Senaratne KPP et al (2020) The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br J Sports Med 54(16):949–959

    Article  PubMed  Google Scholar 

  36. Holmes EA, O’Connor RC, Perry VH et al (2020) Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry 7(6):547–560

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gonçalves de Andrade E, Šimončičová E, Carrier M et al (2021) Microglia fighting for neurological and mental health: on the central nervous system frontline of COVID-19 pandemic. Front Cell Neurosci 15:647378

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kar Ray M, Chow KK, Theodoros T et al (2021) LOVE in the time of Covid-19: a brief mental health intervention to overcome loneliness. Australas Psychiatry 29(5):529–534

    Article  PubMed  Google Scholar 

  39. Chen R, Wang K, Yu J et al (2020) The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol 11:573095

    Article  PubMed  Google Scholar 

  40. Suárez-Sánchez D, Vega-Cabrera NV, Fernández-Moya M et al (2022) Post-coronavirus disease 2019 triggers the appearance of mixed polyneuropathy and brain fog: a case report. Clin Pract 12(3):261–267

    Article  PubMed  PubMed Central  Google Scholar 

  41. Samuels MH, Bernstein LJ (2022) Brain fog in hypothyroidism: what is it, how is it measured, and what can be done about it. Thyroid 32(7):752–763

    Article  PubMed  PubMed Central  Google Scholar 

  42. Davis HE, Assaf GS, McCorkell L et al (2021) Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38:101019

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lechien JR, Chiesa-Estomba CM, De Siati DR et al (2020) Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 277(8):2251–2261

    Article  PubMed  PubMed Central  Google Scholar 

  44. Theoharides TC (2013) Atopic conditions in search of pathogenesis and therapy. Clin Ther 35(5):544–547

    Article  PubMed  Google Scholar 

  45. Hosp JA, Dressing A, Blazhenets G et al (2021) Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 144(4):1263–1276

    Article  PubMed  Google Scholar 

  46. Theoharides TC, Stewart JM, Hatziagelaki E, Kolaitis G (2015) Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front Neurosci 9:225

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ocon AJ (2013) Caught in the thickness of brain fog: exploring the cognitive symptoms of chronic fatigue syndrome. Front Physiol 4:63

    Article  PubMed  PubMed Central  Google Scholar 

  48. Townsend L, Dyer AH, Jones K et al (2020) Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PloS One 15(11):e0240784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Norrie J, Heitger M, Leathem J et al (2010) Mild traumatic brain injury and fatigue: a prospective longitudinal study. Brain Inj 24(13-14):1528–1538

    Article  PubMed  Google Scholar 

  50. Sullivan Mitchell E, Fugate Woods N (2001) Midlife women’s attributions about perceived memory changes: observations from the Seattle Midlife Women’s Health Study. J Womens Health Gend Based Med 10(4):351–362

    Article  CAS  PubMed  Google Scholar 

  51. Ross AJ, Medow MS, Rowe PC, Stewart JM (2013) What is brain fog? An evaluation of the symptom in postural tachycardia syndrome. Clin Auton Res 23(6):305–311

    Article  PubMed  PubMed Central  Google Scholar 

  52. Edwards George JB, Aideyan B, Yates K et al (2022) Gluten-induced neurocognitive impairment: results of a nationwide study. J Clin Gastroenterol 56(7):584–591

    Article  CAS  PubMed  Google Scholar 

  53. Lebwohl B, Ludvigsson JF (2014) Editorial: ‘brain fog’ and coeliac disease - evidence for its existence. Aliment Pharmacol Ther 40(5):565

    Article  CAS  PubMed  Google Scholar 

  54. Lichtwark IT, Newnham ED, Robinson SR et al (2014) Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Ther 40(2):160–170

    Article  CAS  PubMed  Google Scholar 

  55. Mackay M (2015) Lupus brain fog: a biologic perspective on cognitive impairment, depression, and fatigue in systemic lupus erythematosus. Immunol Res 63(1-3):26–37

    Article  CAS  PubMed  Google Scholar 

  56. Roszko KL, Hu TY, Guthrie LC et al (2022) PTH 1-34 replacement therapy has minimal effect on quality of life in patients with hypoparathyroidism. J Bone Miner Res 37(1):68–77

    Article  CAS  PubMed  Google Scholar 

  57. Drzezga A, Becker JA, Van Dijk KR et al (2011) Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain : a journal of neurology 134(Pt 6):1635–1646

    Article  PubMed  Google Scholar 

  58. Theoharides TC, Petra AI, Taracanova A, Panagiotidou S, Conti P (2015) Targeting IL-33 in autoimmunity and inflammation. J Pharmacol Exp Ther 354(1):24–31

    Article  CAS  PubMed  Google Scholar 

  59. Valent P, Akin C, Arock M et al (2012) Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int Arch Allergy Immunol 157(3):215–225

    Article  PubMed  Google Scholar 

  60. Petra AI, Panagiotidou S, Stewart JM, Conti P, Theoharides TC (2014) Spectrum of mast cell activation disorders. Expert Rev Clin Immunol 10(6):729–739

    Article  CAS  PubMed  Google Scholar 

  61. Moura DS, Sultan S, Georgin-Lavialle S et al (2012) Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression. PloS One 7(6):e39468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kabbani N, Olds JL (2020) Does COVID19 Infect the brain? If so, smokers might be at a higher risk. Mol Pharmacol 97(5):351–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren S, Wang Y, Yue F et al (2018) The paraventricular thalamus is a critical thalamic area for wakefulness. Science (New York, NY) 362(6413):429–434

    Article  CAS  Google Scholar 

  64. Chen B, Xu C, Wang Y et al (2020) A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun 11(1):923

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thouvenin O, Keiser L, Cantaut-Belarif Y et al (2020) Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. Elife 9

  66. Jacob F, Pather SR, Huang WK et al (2020) Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell 27(6):937–50.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pellegrini L, Albecka A, Mallery DL et al (2020) SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 27(6):951–61.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Siddiqui R, Mungroo MR (1995) Khan NA (2021) SARS-CoV-2 invasion of the central nervous: a brief review. Hosp Pract 49(3):157–163

    Article  Google Scholar 

  69. Baig AM, Khaleeq A, Ali U, Syeda H (2020) Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Nerosci 11(7):995–998

    Article  CAS  Google Scholar 

  70. Stefano GB, Büttiker P, Weissenberger S et al (2021) Editorial: the pathogenesis of long-term neuropsychiatric COVID-19 and the role of microglia, mitochondria, and persistent neuroinflammation: a hypothesis. Med Sci Monit 27:e933015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crunfli F, Carregari VC, Veras FP et al (2022) SARS-CoV-2 infects brain astrocytes of COVID-19 patients. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A 119(35):e2200960119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  73. Bass NH, Hess HH, Pope A, Thalheimer C (1971) Quantitative cytoarchitectonic distribution of neurons, glia, and DNA in rat cerebral cortex. J Comp Neurol 143(4):481–490

    Article  CAS  PubMed  Google Scholar 

  74. Sherwood CC, Stimpson CD, Raghanti MA et al (2006) Evolution of increased glia–neuron ratios in the human frontal cortex. Proc Natl Acad Sci 103(37):13606–13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zorec R, Verkhratsky A (2023) Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 67(1):131–145. https://doi.org/10.1042/EBC20220082

    Article  CAS  PubMed  Google Scholar 

  76. Turner DA, Adamson DC (2011) Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol 70(3):167–176

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi S (2021) Neuroprotective function of high glycolytic activity in astrocytes: common roles in stroke and neurodegenerative diseases. Int J Mol Sci 22(12)

  78. Kanberg N, Ashton NJ, Andersson LM et al (2020) Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95(12):e1754–e17e9

    Article  CAS  PubMed  Google Scholar 

  79. de Oliveira LG, de Souza AY, Yamamoto P et al (2022) SARS-CoV-2 infection impacts carbon metabolism and depends on glutamine for replication in Syrian hamster astrocytes. J Neurochem 163(2):113–132

    Article  PubMed  Google Scholar 

  80. Verkhratsky A, Parpura V, Vardjan N, Zorec R (2019) Physiology of astroglia. Adv Exp Med Biol 1175:45–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Potokar M, Jorgačevski J, Zorec R (2019) Astrocytes in flavivirus infections. Int J Mol Sci 20(3)

  82. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190

    Article  CAS  PubMed  Google Scholar 

  83. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620

    Article  CAS  PubMed  Google Scholar 

  84. Soung A, Klein RS (2020) Astrocytes: initiators of and responders to inflammation. Glia in Health and Disease:89760

  85. Zorec R, Županc TA, Verkhratsky A (2019) Astrogliopathology in the infectious insults of the brain. Neurosci Lett 689:56–62

    Article  CAS  PubMed  Google Scholar 

  86. Theoharides TC, Cholevas C, Polyzoidis K, Politis A (2021) Long-COVID syndrome-associated brain fog and chemofog: luteolin to the rescue. Biofactors 47(2):232–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stefano GB, Ptacek R, Ptackova H, Martin A, Kream RM (2021) Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival. Med Sci Monit 27:e930886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26(8):3103–17. https://doi.org/10.1096/fj.11-197194

    Article  CAS  PubMed  Google Scholar 

  89. Skaper SD, Facci L, Giusti P (2014) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141(3):314–327. https://doi.org/10.1111/imm.12170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Beumer W, Gibney SM, Drexhage RC et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92(5):959–975. https://doi.org/10.1189/jlb.0212100

    Article  CAS  PubMed  Google Scholar 

  91. Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17(6):485–495

    Article  PubMed  Google Scholar 

  92. Sandoval-Cruz M, García-Carrasco M, Sánchez-Porras R et al (2011) Immunopathogenesis of vitiligo. Autoimmun Rev 10(12):762–765

    Article  CAS  PubMed  Google Scholar 

  93. Clough E, Inigo J, Chandra D et al (2021) Mitochondrial dynamics in SARS-COV2 spike protein treated human microglia: implications for neuro-COVID. J Neuroimmune Pharmacol 16(4):770–784

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mangale V, Syage AR, Ekiz HA et al (2020) Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia 68(11):2345–2360

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ercegovac M, Asanin M, Savic-Radojevic A et al (2022) Antioxidant genetic profile modifies probability of developing neurological sequelae in long-COVID. Antioxidants (Basel) 11(5)

  96. Pratt J, Lester E, Parker R (2021) Could SARS-CoV-2 cause tauopathy? Lancet Neurol 20(7):506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Theoharides TC, Weinkauf C, Conti P (2004) Brain cytokines and neuropsychiatric disorders. J Clin Psychopharmacol 24(6):577–581

    Article  PubMed  Google Scholar 

  98. Frank MG, Nguyen KH, Ball JB et al (2022) SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: evidence of PAMP-like properties. Brain Behav Immun 100:267–277

    Article  CAS  PubMed  Google Scholar 

  99. Soung AL, Vanderheiden A, Nordvig AS et al (2022) COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 145(12):4193–4201

    Article  PubMed  PubMed Central  Google Scholar 

  100. Theoharides TC, Zhang B, Conti P (2011) Decreased mitochondrial function and increased brain inflammation in bipolar disorder and other neuropsychiatric diseases. J Clin Psychopharmacol 31(6):685–687

    Article  PubMed  Google Scholar 

  101. Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E et al (2020) Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology 95(8):e1060–e1e70

    Article  PubMed  PubMed Central  Google Scholar 

  102. Helms J, Kremer S, Merdji H et al (2020) Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 382(23):2268–2270

    Article  PubMed  Google Scholar 

  103. Pîrşcoveanu DFV, Pirici I, Tudorică V et al (2017) Tau protein in neurodegenerative diseases - a review. Rom J Morphol Embryol 58(4):1141–1150

    PubMed  Google Scholar 

  104. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384

    Article  CAS  PubMed  Google Scholar 

  105. Eberle RJ, Coronado MA, Gering I et al (2023) Tau protein aggregation associated with SARS-CoV-2 main protease. PLoS One 18(8):e0288138. https://doi.org/10.1371/journal.pone.0288138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun B, Tang N, Peluso MJ et al (2021) Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations. Cells 10(2)

  107. Ramani A, Müller L, Ostermann PN et al (2020) SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 39(20):e106230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. De Lorenzo R, Loré NI, Finardi A et al (2021) Blood neurofilament light chain and total tau levels at admission predict death in COVID-19 patients. J Neurol 268(12):4436–4442

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brunello CA, Merezhko M, Uronen RL, Huttunen HJ (2020) Mechanisms of secretion and spreading of pathological tau protein. Cellular and molecular life sciences : CMLS 77(9):1721–1744

    Article  CAS  PubMed  Google Scholar 

  110. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 287(23):19440–19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hanafi R, Roger PA, Perin B et al (2020) COVID-19 neurologic complication with CNS vasculitis-like pattern. AJNR Am J Neuroradiol 41(8):1384–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Timmons GM, Rempe T, Bevins EA et al (2021) CNS lymphocytic vasculitis in a young woman with COVID-19 infection. Neurol Neuroimmunol Neuroinflamm 8(5):e1048. https://doi.org/10.1212/NXI.0000000000001048

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ercolini AM, Miller SD (2009) The role of infections in autoimmune disease. Clin Exp Immunol 155(1):1–15. https://doi.org/10.1111/j.1365-2249.2008.03834.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G (2021) New onset of autoimmune diseases following COVID-19 diagnosis. Cells 10(12)

  115. Zhang Y, Xiao M, Zhang S et al (2020) Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med 382(17):e38

    Article  PubMed  Google Scholar 

  116. Toscano G, Palmerini F, Ravaglia S et al (2020) Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med 382(26):2574–2576

    Article  PubMed  Google Scholar 

  117. Consiglio CR, Cotugno N, Sardh F et al (2020) The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell 183(4):968–81.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zuo Y, Estes SK, Ali RA et al (2020) Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 12(570):eabd3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hsu TY, D’Silva KM, Patel NJ et al (2021) Incident systemic rheumatic disease following COVID-19. The Lancet Rheumatology 3(6):e402–e4e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Taeschler P, Cervia C, Zurbuchen Y et al (2022) Autoantibodies in COVID-19 correlate with antiviral humoral responses and distinct immune signatures. Allergy 77(8):2415–2430. https://doi.org/10.1111/all.15302

    Article  CAS  PubMed  Google Scholar 

  121. Lerma LA, Chaudhary A, Bryan A et al (2020) Prevalence of autoantibody responses in acute coronavirus disease 2019 (COVID-19). Journal of translational autoimmunity 3:100073

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bastard P, Rosen LB, Zhang Q et al (2020) Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science (New York, NY) 370(6515)

  123. Wang EY, Mao T, Klein J et al (2021) Diverse functional autoantibodies in patients with COVID-19. Nature 595(7866):283–288

    Article  CAS  PubMed  Google Scholar 

  124. Bastard P (2021) Autoantibodies neutralizing type I IFNs are present in∼ 4% of uninfected individuals over 70 years old and account for∼ 20% of COVID-19 deaths. Sci Immunol 62:EABL4340

    Article  Google Scholar 

  125. Chang SE, Feng A, Meng W et al (2021) New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun 12(1):5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sacchi MC, Tamiazzo S, Stobbione P et al (2021) SARS-CoV-2 infection as a trigger of autoimmune response. Clin Transl Sci 14(3):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou SY, Zhang C, Shu WJ et al (2021) Emerging roles of coronavirus in autoimmune diseases. Arch Med Res 52(7):665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mobasheri L, Nasirpour MH, Masoumi E et al (2022) SARS-CoV-2 triggering autoimmune diseases. Cytokine 154:155873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Angileri F, Legare S, Marino Gammazza A et al (2020) Molecular mimicry may explain multi-organ damage in COVID-19. Autoimmun Rev 19(8):102591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marino Gammazza A, Légaré S, Lo Bosco G et al (2020) Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones 25(5):737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lucchese G, Flöel A (2020) Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmun Rev 19(7):102556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dahmen A, Keller FM, Derksen C et al (2022) Screening and assessment for post-acute COVID-19 syndrome (PACS), guidance by personal pilots and support with individual digital trainings within intersectoral care: a study protocol of a randomized controlled trial. BMC Infect Dis 22(1):693. https://doi.org/10.1186/s12879-022-07584-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ismael F, Bizario JCS, Battagin T et al (2021) Post-infection depressive, anxiety and post-traumatic stress symptoms: a prospective cohort study in patients with mild COVID-19. Prog Neuropsychopharmacol Biol Psychiatry 111:110341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dieckhoff M, Gash V (2015) Unemployed and alone? Unemployment and social participation in Europe. Int J Sociol Soc Policy 35(1/2):67–90. https://doi.org/10.1108/IJSSP-01-2014-0002

    Article  Google Scholar 

  135. Raveendran AV, Jayadevan R, Sashidharan S (2021) Long COVID: an overview. Diabetes Metab Syndr 15(3):869–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Krishnan K, Lin Y, Prewitt KM, Potter DA (2022) Multidisciplinary approach to brain fog and related persisting symptoms post COVID-19. J Health Serv Psychol 48(1):31–38

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhang Y, Li YX, Zhong DL et al (2022) Clinical practice guidelines and expert consensus statements on rehabilitation for patients with COVID-19: protocol for a systematic review. BMJ Open 12(8):e060767

    Article  PubMed  Google Scholar 

  138. Humphreys H, Kilby L, Kudiersky N, Copeland R (2021) Long COVID and the role of physical activity: a qualitative study. BMJ Open 11(3):e047632

    Article  PubMed  Google Scholar 

  139. Fugazzaro S, Contri A, Esseroukh O et al (2022) Rehabilitation interventions for post-acute COVID-19 syndrome: a systematic review. Int J Environ Res Public Health 19(9)

  140. Houben S, Bonnechère B (2022) The impact of COVID-19 infection on cognitive function and the implication for rehabilitation: a systematic review and meta-analysis. Int J Environ Res Public Health 19(13)

  141. Tardy AL, Pouteau E, Marquez D, Yilmaz C, Scholey A (2020) Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients 12(1)

  142. Rossato MS, Brilli E, Ferri N, Giordano G, Tarantino G (2021) Observational study on the benefit of a nutritional supplement, supporting immune function and energy metabolism, on chronic fatigue associated with the SARS-CoV-2 post-infection progress. Clin Nutr ESPEN 46:510–518

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lewis JE, Poles J, Shaw DP et al (2021) The effects of twenty-one nutrients and phytonutrients on cognitive function: a narrative review. J Clin Transl Res 7(4):575–620

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Satoh T, Trudler D, Oh CK, Lipton SA (2022) Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants (Basel) 11(1)

  145. Satoh T, Lipton S (2017) Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Research 6:2138

    Article  PubMed  PubMed Central  Google Scholar 

  146. McCord JM, Hybertson BM, Cota-Gomez A, Gao B (2021) Nrf2 activator PB125® as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radic Biol Med 175:56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Abbas M, Verma S, Verma S et al (2021) Association of GSTM1 and GSTT1 gene polymorphisms with COVID-19 susceptibility and its outcome. J Med Virol 93(9):5446–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu B, Dong D (2012) Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 33(12):656–668

    Article  CAS  PubMed  Google Scholar 

  150. Pljesa-Ercegovac M, Savic-Radojevic A, Matic M et al (2018) Glutathione transferases: potential targets to overcome chemoresistance in solid tumors. Int J Mol Sci 19(12)

  151. Chartoumpekis DV, Wakabayashi N, Kensler TW (2015) Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism. Biochem Soc Trans 43(4):639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cho HY, Marzec J, Kleeberger SR (2015) Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med 88(Pt B):362–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ramezani A, Nahad MP, Faghihloo E (2018) The role of Nrf2 transcription factor in viral infection. J Cell Biochem 119(8):6366–6382

    Article  CAS  PubMed  Google Scholar 

  154. Muchtaridi M, Amirah SR, Harmonis JA, Ikram EHK (2022) Role of nuclear factor erythroid 2 (Nrf2) in the recovery of long COVID-19 using natural antioxidants: a systematic review. Antioxidants (Basel) 11(8)

  155. Herengt A, Thyrsted J, Holm CK (2021) NRF2 in viral infection. Antioxidants (Basel) 10(9)

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAM conceived and wrote the manuscript, critically reviewed the manuscript, and conceived the figure. The author has read and approved the final manuscript.

Corresponding author

Correspondence to Mahsa Aghajani Mir.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajani Mir, M. Brain Fog: a Narrative Review of the Most Common Mysterious Cognitive Disorder in COVID-19. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03715-y

Keywords

Navigation