Skip to main content

Advertisement

Log in

Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), is the major type of dementia and most progressive, irreversible widespread neurodegenerative disorder affecting the elderly worldwide. The prime hallmarks of Alzheimer’s disease (AD) are beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT). In spite of recent advances and developments in targeting the hallmarks of AD, symptomatic medications that promise neuroprotective activity against AD are currently unable to treat degenerating brain clinically or therapeutically and show little efficacy. The extensive progress of AD therapies over time has resulted in the advent of disease-modifying medications with the potential to alleviate AD. However, due to the presence of a defensive connection between the vascular system and the neural tissues known as the blood–brain barrier (BBB), directing these medications to the site of action in the degenerating brain is the key problem. BBB acts as a highly selective semipermeable membrane that prevents any type of foreign substance from entering the microenvironment of neurons. To overcome this limitation, the revolutionary approach of nanoparticle(NP)/nanocarrier-mediated drug delivery system has marked the era with its unique property to cross, avoid, or disrupt the defensive BBB efficiently and release the modified drug at the target site of action. After comprehensive data mining, this review focuses on the detailed understanding of different types of nanoparticle(NP)/nanocarrier-mediated drug delivery system like liposomes, micelles, gold nanoparticles(NP), polymeric NPs, etc. which have promising potential in carrying the desired drug(cargo) to the location in the degenerated brain thus mitigating the Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

References whose information was analyzed during the current study are available upon reasonable request from the corresponding author.

References

  1. Heemels M-T (2016) Neurodegenerative diseases. Nature 539:179–179. https://doi.org/10.1038/539179a

    Article  PubMed  Google Scholar 

  2. Aarsland D, Batzu L, Halliday GM et al (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7:47. https://doi.org/10.1038/s41572-021-00280-3

    Article  PubMed  Google Scholar 

  3. Francis OW (2007) Huntington’s disease. The Lancet 369:218–228. https://doi.org/10.1016/S0140-6736(07)60111-1

    Article  CAS  Google Scholar 

  4. Budson A, Jason W (2018) Faculty opinions recommendation of the road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539:187–196. https://doi.org/10.3410/f.726951684.793548675

    Article  Google Scholar 

  5. Savelieff MG, Nam G, Kang J et al (2019) Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev 119(2):1221–1322. https://doi.org/10.1021/acs.chemrev.8b00138

    Article  CAS  PubMed  Google Scholar 

  6. Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron–cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94–108. https://doi.org/10.1038/s41583-018-0113-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pini L, Pievani M, Bocchetta M et al (2016) Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev 30:25–48. https://doi.org/10.1016/j.arr.2016.01.002

    Article  PubMed  Google Scholar 

  8. Sanchez-Mut JV, Gräff J (2015) Epigenetic alterations in Alzheimer’s disease. Front Behav Neurosci 9:347. https://doi.org/10.3389/fnbeh.2015.00347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlsson CM (2010) Type 2 diabetes mellitus, dyslipidemia, and Alzheimer’s disease. JAD 20(3):711–722. https://doi.org/10.3233/JAD-2010-100012

    Article  PubMed  Google Scholar 

  10. Hou Y, Dan X, Babbar M et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581. https://doi.org/10.1038/s41582-019-0244-7

    Article  PubMed  Google Scholar 

  11. Muralidar S, Ambi SV, Sekaran S et al (2020) Role of tau protein in Alzheimer’s disease: the prime pathological player. Int J Biol Macromol 163:1599–1617. https://doi.org/10.1016/j.ijbiomac.2020.07.327

    Article  CAS  PubMed  Google Scholar 

  12. Wong KH, Riaz MK, Xie Y et al (2019) Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci 20(2):381. https://doi.org/10.3390/ijms20020381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hardy J, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:5054. https://doi.org/10.1126/science.1566067

    Article  Google Scholar 

  14. Choi H, Kim E, Choi JY et al (2021) Potent therapeutic targets for treatment of Alzheimer’s disease: amyloid degrading enzymes. Korean Chem Soc 42:1419–1429. https://doi.org/10.1002/bkcs.12390

    Article  CAS  Google Scholar 

  15. Liu PP, Xie Y, Meng XY et al (2019) History and progress of hypotheses and clinical trials for Alzheimer’s disease. Sig Transduct Target Ther 4:29. https://doi.org/10.1038/s41392-019-0063-8

    Article  CAS  Google Scholar 

  16. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33. https://doi.org/10.1177/1756285612461679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wen MM, El-Salamauni NS, Refaie WM et al (2014) Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Control Release 245:95–107. https://doi.org/10.1016/j.jconrel.2016.11.025

    Article  CAS  Google Scholar 

  18. Agrawal M, Saraf S, Saraf S et al (2018) Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 281:139–177. https://doi.org/10.1016/j.jconrel.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Cano A, Turowski P, Ettcheto M et al (2021) Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: from current to future challenges. J Nanobiotechnol 19:122. https://doi.org/10.1186/s12951-021-00864-x

    Article  Google Scholar 

  20. Abbott N, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez-Carter D, Liu X, Tockary TA et al (2020) Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium. Proc Natl Acad Sci 117(32):9141–19150. https://doi.org/10.1073/pnas.2002016117

    Article  CAS  Google Scholar 

  22. Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769. https://doi.org/10.1038/sj.clpt.6100400

    Article  CAS  PubMed  Google Scholar 

  23. Pfundstein G, Nikonenko AG, Sytnyk V (2022) Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 10:969547. https://doi.org/10.3389/fcell.2022.969547

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wadetwar RN, Godbole AP (2021) Nanocarriers: a tool for effective gene delivery. Nanopharmaceutical Adv Deliv Syst 8:161–185. https://doi.org/10.1002/9781119711698.ch8

    Article  CAS  Google Scholar 

  25. Yu C, Li L, Hu P et al (2021) Recent advances in stimulus-responsive nanocarriers for gene therapy. Adv Sci 8(14):2100540. https://doi.org/10.1002/advs.202100540

    Article  CAS  Google Scholar 

  26. Doody RS, Massman P, Mahurin R et al (1995) Positive and negative neuropsychiatric features in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 7(1):54–60. https://doi.org/10.1176/jnp.7.1.54

    Article  CAS  PubMed  Google Scholar 

  27. Cai Z, Qiao PF, Wan CQ et al (2018) Role of blood-brain barrier in Alzheimer’s disease. J Alzheimers Dis 63(4):1223–1234. https://doi.org/10.3233/JAD-180098

    Article  CAS  PubMed  Google Scholar 

  28. Hampel H, Hardy J, Blennow K et al (2021) The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry 2(10):5481–5503. https://doi.org/10.1038/s41380-021-01249-0

    Article  CAS  Google Scholar 

  29. Ashrafian H, Zadeh EH, Khan RH (2021) Review on Alzheimer’s disease: inhibition of amyloid beta and tau tangle formation. Int J Biol\ Macromol 167:382–394. https://doi.org/10.1016/j.ijbiomac.2020.11.192

    Article  CAS  PubMed  Google Scholar 

  30. Baumkötter F, Schmidt N, Vargas C et al (2014) Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 34(33):11159–11172. https://doi.org/10.1523/JNEUROSCI.0180-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kong GKW, Miles LA, Crespi GAN et al (2008) Copper binding to the Alzheimer’s disease amyloid precursor protein. Eur Biophys J 37:269–279. https://doi.org/10.1007/s00249-007-0234-3

    Article  CAS  PubMed  Google Scholar 

  32. Colin LM, Beyreuther K (2006) Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the Aβ amyloid pathway. Brain 129:2823–2839. https://doi.org/10.1093/brain/awl251

    Article  Google Scholar 

  33. Chen GF, Xu TH, Yan Y et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205–1235. https://doi.org/10.1038/aps.2017.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. MacLeod R, Hillert EK, Cameron RT et al (2015) The role and therapeutic targeting of α-, β-and γ-secretase in Alzheimer’s disease. Futur Sci OA 1:3. https://doi.org/10.4155/fso.15.9

    Article  CAS  Google Scholar 

  35. Balducci C, Beeg M, Stravalaci M et al (2010) Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. PNAS 107(5):2295–2300. https://doi.org/10.1073/pnas.0911829107

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Zhao Y, Zhang L et al (2019) Cellular prion protein as a receptor of toxic amyloid-β42 oligomers is important for Alzheimer’s disease. Front Cell Neurosci 13:339. https://doi.org/10.3389/fncel.2019.00339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanehisa M, Furumichi M, Sato Y et al (2023) KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51:D587–D592. https://doi.org/10.1093/nar/gkac963

    Article  CAS  PubMed  Google Scholar 

  38. Freir DB, Nicoll AJ, Klyubin I et al (2011) Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat Commun 2(1):336. https://doi.org/10.1038/ncomms1341

    Article  CAS  PubMed  Google Scholar 

  39. Snyder E, Nong Y, Almeida C et al (2005) Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 8:1051–1058. https://doi.org/10.1038/nn1503

    Article  CAS  PubMed  Google Scholar 

  40. Santuccione A, Sytnyk V, Leshchyns’ka I et al (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169(2):341–354. https://doi.org/10.1083/jcb.200409127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang F, Gordon BA, Ryman DC et al (2015) Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease. Neurology 85(9):790–798. https://doi.org/10.1212/WNL.0000000000001903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gasteiger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788. https://doi.org/10.1093/nar/gkg563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sayers EW, Bolton EE, Brister JR et al (2022) Database resources of the national center for biotechnology information. Nucleic Acids Res 50(D1):D20–D26. https://doi.org/10.1093/nar/gkab1112

    Article  CAS  PubMed  Google Scholar 

  44. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247. https://doi.org/10.1101/cshperspect.a006247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415. https://doi.org/10.1038/s41582-018-0013-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mukrasch MD, Bibow S, Korukottu J et al (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7(2):e34. https://doi.org/10.1371/journal.pbio.1000034

    Article  CAS  PubMed  Google Scholar 

  47. Illenberger S, Zheng-Fischhöfer Q, Preuss U et al (2017) The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol Biol Cell 9(6):1495–1512. https://doi.org/10.1091/mbc.9.6.1495

    Article  Google Scholar 

  48. Gyparaki MT, Arab A, Sorokina EM et al (2021) Tau forms oligomeric complexes on microtubules that are distinct tau aggregates. Proc Natl Acad Sci U S A 118(19):e2021461118. https://doi.org/10.1073/pnas.2021461118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gorlovoy P, Larionov S, Pham TTH et al (2009) Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J 23(8):2502–2513. https://doi.org/10.1096/fj.08-123877

    Article  CAS  PubMed  Google Scholar 

  50. Roy K (ed) (2018) Computational modeling of drugs against Alzheimer’s disease. Springer, New York

    Google Scholar 

  51. Zhou Y, Wang S, Zhang Y (2010) Catalytic reaction mechanism of acetylcholinesterase determined by Born−Oppenheimer ab initio QM/MM molecular dynamics simulations. J Phys Chem B 114(26):8817–8825. https://doi.org/10.1021/jp104258d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Silva MA, Kiametis AS, Treptow W (2020) Donepezil inhibits acetylcholinesterase via multiple binding modes at room temperature. J Chem Inf Model 60(7):3463–3471. https://doi.org/10.1021/acs.jcim.9b01073

    Article  CAS  PubMed  Google Scholar 

  53. Svobodova B, Mezeiova E, Hepnarova V et al (2019) Exploring structure-activity relationship in tacrine-squaramide derivatives as potent cholinesterase inhibitors. Biomolecules 9(8):379. https://doi.org/10.3390/biom9080379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mak S, Li W, Fu H et al (2021) Promising tacrine/huperzine A-based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders from relieving symptoms to modifying diseases through multitarget. J Neurochem 158(6):1381–1393. https://doi.org/10.1111/jnc.15379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cassidy L, Fernandez F, Johnson JB et al (2020) Oxidative stress in Alzheimer’s disease: a review on emergent natural polyphenolic therapeutics. Complement Ther Med 49:102294

    Article  PubMed  Google Scholar 

  56. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305. https://doi.org/10.1016/j.biocel.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  57. Lyra e Silva NM, Gonçalves RA, Pascoal TA et al (2021) Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl Psychiatry 11:251. https://doi.org/10.1038/s41398-021-01349-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moore AH, O’Banion MK (2002) Neuroinflammation and anti-inflammatory therapy for Alzheimer’s disease. Adv Drug Deliv Rev 54(12):1627–1656. https://doi.org/10.1016/s0169-409x(02)00162-x

    Article  CAS  PubMed  Google Scholar 

  59. Larson EB, Kukull WA, Katzman RL (1992) Cognitive impairment: dementia and Alzheimer’s disease. Annu Rev Public Health 13(1):431–449. https://doi.org/10.1146/annurev.pu.13.050192.002243

    Article  CAS  PubMed  Google Scholar 

  60. Yiannopoulou KG, Sokratis GP (2020) Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis 12:1179573520907397. https://doi.org/10.1177/1179573520907397

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wolfe MS (2018) The molecular and cellular basis of neurodegenerative diseases. Academic Press

    Google Scholar 

  62. McCorry LK (2007) Physiology of the autonomic nervous system. Am J Pharm Educ 71(4):78. https://doi.org/10.5688/aj710478

    Article  PubMed  PubMed Central  Google Scholar 

  63. Seniya C, Khan GJ, Uchadia K (2014) Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer’s disorders using molecular docking and molecular dynamics simulation. Biochem Res Int 2014:705451. https://doi.org/10.1155/2014/705451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ambure P, Kar S, Roy K (2014) Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer’s agents. Biosystems 116:10–20. https://doi.org/10.1016/j.biosystems.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  65. Mushtaq G, Greig NH, Khan JA et al (2014) Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets 13(8):1432–1439. https://doi.org/10.2174/1871527313666141023141545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gill SS, Anderson GM, Fischer HD et al (2009) Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med 169(9):867–873. https://doi.org/10.1001/archinternmed.2009.43

    Article  PubMed  Google Scholar 

  67. Budson AE, Solomon PR (2021). Memory loss, Alzheimer’s disease, and dementia: a practical guide for clinicians. Elsevier Health Sciences

    Google Scholar 

  68. Singer M, Romero B, Koenig E et al (2005) Nightmares in patients with Alzheimer’s disease caused by donepezil. Therapeutic effect depends on the time of intake. Nervenarzt 76:1127–1129. https://doi.org/10.1007/s00115-004-1856-7

    Article  CAS  PubMed  Google Scholar 

  69. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20(18):433. https://doi.org/10.3390/ijms20184331

    Article  CAS  Google Scholar 

  70. Phillips MA, Stewart MA, Woodling DL (2017) Has molecular docking ever brought us a medicine? Molecular Docking. InTech. https://doi.org/10.5772/intechopen.72898.

  71. Ghezzi L, Scarpini E, Galimberti D (2013) Disease-modifying drugs in Alzheimer’s disease. Drug Des Devel Ther 6(7):1471–1479. https://doi.org/10.2147/DDDT.S41431

    Article  Google Scholar 

  72. Cummings J, Zhou Y, Lee G et al (2023) Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement 9:e12385. https://doi.org/10.1002/trc2.12385

    Article  Google Scholar 

  73. Cummings J (2021) Drug development for psychotropic, cognitive-enhancing, and disease-modifying treatments for Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 33(1):3–13. https://doi.org/10.1176/appi.neuropsych.20060152

    Article  PubMed  Google Scholar 

  74. Chen W, Hu Y, Ju D (2020) Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 10(8):1347–1359. https://doi.org/10.1016/j.apsb.2020.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jackson S, Ham RJ, Wilkinson D et al (2004) The safety and tolerability of donepezil in patients with Alzheimer’s disease. Br J Clin Pharmacol 58(Suppl 1):1–8. https://doi.org/10.1111/j.1365-2125.2004.01848.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Olin JT, Bhatnagar V, Reyes P et al (2010) Safety and tolerability of rivastigmine capsule with memantine in patients with probable Alzheimer’s disease: a 26-week, open-label, prospective trial (Study ENA713B US32). Int J Geriatr Psychiatry 25(4):419–426. https://doi.org/10.1002/gps.2355

    Article  PubMed  Google Scholar 

  77. Olin J, Schneider L (2002) Galantamine for Alzheimer’s disease. The Cochrane Database Syst Rev 3:001747. https://doi.org/10.1002/14651858.CD001747

    Article  Google Scholar 

  78. Rasmussen J, Langerman H (2019) Alzheimer’s disease—why we need early diagnosis. Degener Neurol Neuromuscul Dis 9:123–130. https://doi.org/10.2147/DNND.S228939

    Article  PubMed  PubMed Central  Google Scholar 

  79. Alves S, Fol R, Cartier N (2016) Gene therapy strategies for Alzheimer’s disease: an overview. Hum Gene Ther 27(2):100–107. https://doi.org/10.1089/hum.2016.017

    Article  CAS  PubMed  Google Scholar 

  80. Teleanu DM, Chircov C, Grumezescu AM et al (2018) Blood-brain delivery methods using nanotechnology. Pharmaceutics 10(4):269. https://doi.org/10.3390/pharmaceutics10040269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee CS, Leong KW (2020) Advances in microphysiological blood-brain barrier (BBB) models towards drug delivery. Curr Opin Biotechnol 66:78–87. https://doi.org/10.1016/j.copbio.2020.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duwa R, Jeong J-H, Yook S (2021) Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson’s disease. J Pharm Investig 51:465–481. https://doi.org/10.1007/s40005-021-00521-3

    Article  CAS  Google Scholar 

  83. Obermeier B, Verma A, Ransohoff RM (2016) The blood-brain barrier. Handb Clin Neurol 133:39–59. https://doi.org/10.1016/B978-0-444-63432-0.00003-7

    Article  PubMed  Google Scholar 

  84. Khanna AK, Farag E (2017) Blood–brain barrier. In Essentials of neuroanesthesia 51–58. https://doi.org/10.1016/B978-0-12-805299-0.00003-8

  85. Béduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967. https://doi.org/10.1016/j.biomaterials.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  86. Zhou Y, Peng Z, Seven ES et al (2018) Crossing the blood-brain barrier with nanoparticles. J Control Release 270:290–303. https://doi.org/10.1016/j.jconrel.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  87. Islam SU, Shehzad A, Ahmed MB et al (2020) Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules 25:1929. https://doi.org/10.3390/molecules25081929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fonseca LC, Lopes JA, Vieira J et al (2021) Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Deliv Transl Res 11:411–425. https://doi.org/10.3390/molecules25081929

    Article  CAS  PubMed  Google Scholar 

  89. Tripathi P, Shukla P, Beberich E (2022) Theranostic applications of nanomaterials in Alzheimer’s disease: a multifunctional approach. Curr Pharm Des 28(2):116–132. https://doi.org/10.2174/1381612827666211122153946

    Article  CAS  PubMed  Google Scholar 

  90. Gupta GL, Samant NP (2021) Current druggable targets for therapeutic control of Alzheimer’s disease. Contemp Clin Trials 109:106549. https://doi.org/10.1016/j.cct.2021.106549

    Article  PubMed  Google Scholar 

  91. Tsou YH, Zhang XQ, Zhu H et al (2017) Drug delivery to the brain across the blood–brain barrier using nanomaterials. Small 13(43):1701921. https://doi.org/10.1002/smll.201701921

    Article  CAS  Google Scholar 

  92. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4(3):e10143. https://doi.org/10.1002/btm2.10143

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cummings J, Lee G, Ritter A et al (2019) Alzheimer’s disease drug development pipeline: 2019. Alzheimer’s Dement: Transl Res Clin Interv 5:272–293. https://doi.org/10.1016/j.trci.2019.05.008

    Article  Google Scholar 

  94. Vallet-Regi M, Colilla M, Izquierdo-Barba I et al (2017) Mesoporous silica nanoparticles for drug delivery: current insights. Molecules 23(1):47. https://doi.org/10.3390/molecules23010047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chowdhury EA, Noorani B, Alqahtani F et al (2021) Understanding the brain uptake and permeability of small molecules through the BBB: a technical overview. J Cereb Blood Flow Metab 41(8):1797–1820. https://doi.org/10.1177/0271678X20985946

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gadekar V, Borade Y, Kannaujia S et al (2021) Nanomedicines accessible in the market for clinical interventions. J Control Release 330:372–397. https://doi.org/10.1016/j.jconrel.2020.12.034

    Article  CAS  PubMed  Google Scholar 

  97. Farjadian F, Ghasemi A, Gohari O et al (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 14(1):93–126. https://doi.org/10.2217/nnm-2018-0120

    Article  CAS  PubMed  Google Scholar 

  98. Altinoglu G, Adali T (2020) Alzheimer’s disease targeted nano-based drug delivery systems. Curr Drug Targets 21(7):628–646. https://doi.org/10.2174/1389450120666191118123151

    Article  CAS  PubMed  Google Scholar 

  99. Sevigny J, Chiao P, Bussière TW et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  100. Zielińska A, Carreiró F, Oliveira AM et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25(16):3731. https://doi.org/10.3390/molecules25163731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tuszynski M, Thal L, Pay M et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555. https://doi.org/10.1038/nm1239

    Article  CAS  PubMed  Google Scholar 

  102. Zheng M, Tao W, Zou Y et al (2018) Nanotechnology-based strategies for siRNA brain delivery for disease therapy. Trends Biotechnol 36(5):562–575. https://doi.org/10.1016/j.tibtech.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  103. Kim D, Rossi J (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184. https://doi.org/10.1038/nrg2006

    Article  CAS  PubMed  Google Scholar 

  104. Lee S, Son SJ, Song SJ et al (2017) Polyamidoamine (PAMAM) dendrimers modified with cathepsin-B cleavable oligopeptides for enhanced gene delivery. Polymers 9(6):224. https://doi.org/10.3390/polym9060224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Suh J, Romano DM, Nitschke L et al (2019) Loss of ataxin-1 potentiates Alzheimer’s pathogenesis by elevating cerebral BACE1 transcription. Cell 178(5):1159–1175. https://doi.org/10.1016/j.cell.2019.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Min HS, Kim HJ, Naito M et al (2020) Systemic brain delivery of antisense oligonucleotides across the blood–brain barrier with a glucose-coated polymeric nanocarrier. Angew Chem Int Ed 59(21):8173–8180. https://doi.org/10.1002/anie.201914751

    Article  CAS  Google Scholar 

  107. Zhu L, Xu L, Wu X et al (2021) Tau-targeted multifunctional nanoinhibitor for Alzheimer’s disease. ACS Appl Mater Interfaces 13(20):23328–23338. https://doi.org/10.1021/acsami.1c00257

    Article  CAS  PubMed  Google Scholar 

  108. Ross C, Taylor M, Fullwood N et al (2018) Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 13:8507–8522. https://doi.org/10.2147/IJN.S183117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kuo YC, Chen CL, Rajesh R (2019) Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater 87:207–222. https://doi.org/10.1016/j.actbio.2019.01.065

    Article  CAS  PubMed  Google Scholar 

  110. Canovi M, Markoutsa E, Lazar AN et al (2011) The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials 32(23):5489–5497. https://doi.org/10.1016/j.biomaterials.2011.04.020

    Article  CAS  PubMed  Google Scholar 

  111. Tagalakis AD, Do Hyang DL, Bienemann AS et al (2014) Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials 35(29):8406–8415. https://doi.org/10.1016/j.biomaterials.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  112. Lazar AN, Mourtas S, Youssef I et al (2013) Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to Alzheimer disease. Nanomedicine 9(5):712–721. https://doi.org/10.1016/j.nano.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  113. Vallet-Regi M, Rámila A, Del Real RP et al (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. https://doi.org/10.1021/cm0011559

    Article  CAS  Google Scholar 

  114. Argyo C, Weiss V, Bräuchle C et al (2014) Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater 26(1):435–451. https://doi.org/10.1021/cm402592t

    Article  CAS  Google Scholar 

  115. Lin YS, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3(3):364–374. https://doi.org/10.1021/jz2013837

    Article  CAS  PubMed  Google Scholar 

  116. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 46(40):7548–7558. https://doi.org/10.1002/anie.200604488

    Article  CAS  PubMed  Google Scholar 

  117. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534. https://doi.org/10.1002/adma.201104763

    Article  CAS  PubMed  Google Scholar 

  118. Baeza A, Colilla M, Vallet-Regí M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337. https://doi.org/10.1517/17425247.2014.953051

    Article  CAS  PubMed  Google Scholar 

  119. Butler KS, Durfee PN, Theron C et al (2016) Protocells: modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 12(16):2173–2185. https://doi.org/10.1002/smll.201502119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308. https://doi.org/10.1016/0022-3093(94)90708-0

    Article  CAS  Google Scholar 

  121. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308. https://doi.org/10.1016/0022-3093(94)90708-0

    Article  CAS  Google Scholar 

  122. Basharzad SF, Hamidi M, Maleki A et al (2022) Polysorbate-coated mesoporous silica nanoparticles as an efficient carrier for improved rivastigmine brain delivery. Brain Res 1781:147786. https://doi.org/10.1016/j.brainres.2022.147786

    Article  CAS  Google Scholar 

  123. Aliev G, Ashraf GM, Tarasov VV et al (2019) Alzheimer’s disease—future therapy based on dendrimers. Curr Neuropharmacol 17(3):288–294. https://doi.org/10.2174/1570159X16666180918164623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhao J, Fu Y, Yasvoina M et al (2007) β-Site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci 27(14):3639–3649. https://doi.org/10.1523/JNEUROSCI.4396-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gothwal A, Kumar H, Nakhate KT et al (2019) Lactoferrin coupled lower generation PAMAM dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer’s disease in mice. Bioconjug Chem 30:2573–2583. https://doi.org/10.1021/acs.bioconjchem.9b00505

    Article  CAS  PubMed  Google Scholar 

  126. Lu Y, Guo Z, Zhang Y et al (2019) Microenvironment remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia. Adv Sci 6:1801586. https://doi.org/10.1002/advs.201801586

    Article  CAS  Google Scholar 

  127. Yang P, Sheng D, Guo Q et al (2020) Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease. Biomaterials 238:119844. https://doi.org/10.1016/j.biomaterials.2020.119844

    Article  CAS  PubMed  Google Scholar 

  128. Candela P, Gosselet F, Saint-Pol J et al (2010) Apical-to-basolateral transport of amyloid-β peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimer’s Dis 22:849–859. https://doi.org/10.3233/JAD-2010-100462

    Article  CAS  Google Scholar 

  129. Hou K, Zhao J, Wang H et al (2020) Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun 11:4790. https://doi.org/10.1038/s41467-020-18525-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sanati M, Khodagholi F, Aminyavari S et al (2019) Impact of gold nanoparticles on amyloid β-induced Alzheimer’s disease in a rat animal model: involvement of STIM proteins. ACS Chem Neurosci 10:2299–2309. https://doi.org/10.1021/acschemneuro.8b00622

    Article  CAS  PubMed  Google Scholar 

  131. He J, Yu L, Lin X et al (2022) Virus-like particles as nanocarriers for intracellular delivery of biomolecules and compounds. Viruses 14(9):1905. https://doi.org/10.3390/v14091905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ramqvist T, Andreasson K, Dalianis T (2007) Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin Biol Ther 7(7):997–1007. https://doi.org/10.1517/14712598.7.7.997

    Article  CAS  PubMed  Google Scholar 

  133. Ding X, Liu D, Booth G et al (2018) Virus-like particle engineering: from rational design to versatile applications. Biotechnol J 13(5):1700324. https://doi.org/10.1002/biot.201700324

    Article  CAS  Google Scholar 

  134. Arora S, Kanekiyo T, Singh J (2022) Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer’s disease pathology in transgenic mouse model. Int J Biol Macromol 208:901–9011. https://doi.org/10.1016/j.ijbiomac.2022.03.203

    Article  CAS  PubMed  Google Scholar 

  135. Dodart JC, Marr RA, Koistinaho M et al (2005) Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102(4):1211–1216. https://doi.org/10.1073/pnas.0409072102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Paris JL, Colilla M, Izquierdo-Barba I et al (2017) Tuning mesoporous silica dissolution in physiological environments: a review. J Mater Sci 52:8761–8771. https://doi.org/10.1007/s10853-017-0787-1

    Article  CAS  Google Scholar 

  137. Choi E, Kim S (2017) How can doxorubicin loading orchestrate in vitro degradation behaviors of mesoporous silica nanoparticles under a physiological condition? Langmuir 33(20):4974–4980. https://doi.org/10.1021/acs.langmuir.7b00332

    Article  CAS  PubMed  Google Scholar 

  138. Barthel AK, Dass M, Dröge M et al (2014) Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein J Nanotechnol. 1905:17. https://doi.org/10.3762/bjnano.5.201

    Article  CAS  Google Scholar 

  139. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 5:1593–1615. https://doi.org/10.1007/s42247-021-00335-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cohen T, Guo J, Hurtado D et al (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252. https://doi.org/10.1038/ncomms1255

    Article  PubMed  Google Scholar 

  141. Liu F, Zaidi T, Iqbal K et al (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett 512(1–3):101–106. https://doi.org/10.1016/S0014-5793(02)02228-7

    Article  CAS  PubMed  Google Scholar 

  142. Senapati S, Mahanta AK, Kumar S et al (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Sig Transduct Target Ther 3:7. https://doi.org/10.1038/s41392-017-0004-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Indira for technical support. We also acknowledge BioRender.com for its usage in the design of the graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

UJ: drafted the manuscript and contributed manuscript writing. PS and SJ: conceived the topic and designed the structure of the review. PS critically revised the manuscript.

Corresponding authors

Correspondence to Surabhi Johari or Priyanka Srivastava.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Competing Interests

The authors declare no competing interests.

Research Involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, U., Johari, S. & Srivastava, P. Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer’s Disease. Mol Neurobiol 61, 1969–1989 (2024). https://doi.org/10.1007/s12035-023-03671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03671-7

Keywords

Navigation