Skip to main content

Advertisement

Log in

Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson’s disease

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Parkinson’s disease (PD) is the most common progressive neurodegenerative disorder and is characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNC). To date, none of the strategies, such as pharmacological, non-pharmacological, and neurosurgical therapies, have been capable of fundamental treatment of PD. These types of treatments provide only symptomatic relief, and effective targeting for PD has lagged behind other disease areas, due to drug delivery challenges caused by the blood–brain barrier (BBB).

Area covered

This review focus on the immunologic and nanoformulation strategies used for the treatment of PD. In this review, we discuss the current strategies that offer the development of immunotherapies, antibody-based therapies, and nanoparticles (NPs)-based therapy to reduce the burden of degeneration of DA neurons due to synucleinopathies and elevation of proinflammatory cytokines in the central nervous system (CNS). Furthermore, this review presents current ongoing clinical trials.

Expert opinion

The accumulation and transmission of α-synuclein and activation of glial cells cause the death of dopaminergic neurons and lead to the progression of PD. Many studies have investigated the immunotherapies and NPs-based therapy that target α-synuclein, and microglia, which have been shown to effectively prevent the progression of α-synuclein deposition and microglia deactivation. Furthermore, at present, the formulations of different drugs, such as DA, levodopa (L-DOPA), monoamine oxidase inhibitors (MAO-I), and antioxidants, is administered with a multifunctional carrier that can penetrate the BBB. Therefore, rapid clinical progression on these strategies gives new hope in the therapy of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen PJ, Feigin A (2014) Gene-based therapies in Parkinson’s disease. Neurotherapeutics 11:60–67

    CAS  PubMed  Google Scholar 

  • Allen Reish HE, Standaert DG (2015) Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J Parkinsons Dis 5:1–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonietta Panaro M, Cianciulli A (2012) Current opinions and perspectives on the role of immune system in the pathogenesis of Parkinson’s disease. Curr Pharm Des 18:200–208

    Google Scholar 

  • Antonini A, Bravi D, Sandre M & Bubacco L (2020) Immunization therapies for Parkinson’s disease: state of the art and considerations for future clinical trials. Expert Opin Investig Drugs 29:685–695

  • Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J (2013) Alpha-synuclein p. H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28:811–813

    CAS  PubMed  Google Scholar 

  • Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15:1257–1272

    PubMed  Google Scholar 

  • Bae E-J, Lee H-J, Rockenstein E, Ho D-H, Park E-B, Yang N-Y, Desplats P, Masliah E, Lee S-J (2012) Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32:13454–13469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banstola A, Emami F, Jeong J-H, Yook S (2018) Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer. Macromol Res 26:955–964

    CAS  Google Scholar 

  • Banstola A, Duwa R, Emami F, Jeong J-H, Yook S (2020) enhanced caspase-mediated abrogation of autophagy by temozolomide-loaded and panitumumab-conjugated poly (lactic-co-glycolic acid) nanoparticles in epidermal growth factor receptor overexpressing glioblastoma cells. Mol Pharm 17:4386–4400

    CAS  PubMed  Google Scholar 

  • Bishop CJ, Tzeng SY, Green JJ (2015) Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater 11:393–403

    CAS  PubMed  Google Scholar 

  • Bollimpelli VS, Kumar P, Kumari S, Kondapi AK (2016) Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 95:37–45

    CAS  PubMed  Google Scholar 

  • Braczynski AK, Schulz JB, Bach JP (2017) Vaccination strategies in tauopathies and synucleinopathies. J Neurochem 143:467–488

    CAS  PubMed  Google Scholar 

  • Bridi JC, Hirth F (2018) Mechanisms of α-synuclein induced synaptopathy in Parkinson’s disease. Front Neurosci 12:80

    PubMed  PubMed Central  Google Scholar 

  • Brodacki B, Staszewski J, Toczyłowska B, Kozłowska E, Drela N, Chalimoniuk M, Stępien A (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFα, and INFγ concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441:158–162

    CAS  PubMed  Google Scholar 

  • Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31:175–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brys M, Fanning L, Hung S, Ellenbogen A, Penner N, Yang M, Welch M, Koenig E, David E, Fox T (2019) Randomized phase I clinical trial of anti–α-synuclein antibody BIIB054. Mov Disord 34:1154–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, Li W, Liu J (2008) Polyhydroxylated fullerene derivative C60(OH)24 prevents mitochondrial dysfunction and oxidative damage in an MPP+-induced cellular model of Parkinson’s disease. J Neurosci Res 86:3622–3634

    CAS  PubMed  Google Scholar 

  • Carta AR, Pisanu A (2013) Modulating microglia activity with PPAR-γ agonists: a promising therapy for Parkinson’s disease? Neurotox Res 23:112–123

    CAS  PubMed  Google Scholar 

  • Chang KC, Kim MK, Wee WR, Lee JH (2008) Corneal endothelial dysfunction associated with amantadine toxicity. Cornea 27:1182–1185

    PubMed  Google Scholar 

  • Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 64:640–665

    CAS  PubMed  Google Scholar 

  • Chen Y, Shan X, Luo C, He Z (2020) Emerging nanoparticulate drug delivery systems of metformin. Int J Pharm Investig 50:219–230

    Google Scholar 

  • Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C (2017) Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett 7:91–122

    CAS  Google Scholar 

  • Corti O, Hampe C, Darios F, Ibanez P, Ruberg M, Brice A (2005) Parkinson’s disease: from causes to mechanisms. Comptes Rendus Biol 328:131–142

    CAS  Google Scholar 

  • Cox D, Carver JA, Ecroyd H (2014) Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim Biophys Acta Mol Basis Dis 1842:1830–1843

    CAS  Google Scholar 

  • Crotty S, Fitzgerald P, Tuohy E, Harris D, Fisher A, Mandel A, Bolton A, Sullivan A, Nolan Y (2008) Neuroprotective effects of novel phosphatidylglycerol-based phospholipids in the 6-hydroxydopamine model of Parkinson’s disease. Eur J Neurosci 27:294–300

    CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    CAS  PubMed  Google Scholar 

  • De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    PubMed  Google Scholar 

  • Delgado M, Ganea D (2003) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J 17:1–18

    Google Scholar 

  • Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144

    CAS  PubMed  Google Scholar 

  • Dickson DW (2018) Neuropathology of Parkinson disease. Parkinsonism Relat Disord 46:S30–S33

    PubMed  Google Scholar 

  • Duwa R, Emami F, Lee S, Jeong J-H, Yook S (2019) Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multiforme. J Ind Eng Chem 79:261–273

    CAS  Google Scholar 

  • Duwa R, Banstola A, Emami F, Jeong J-H, Lee S, Yook S (2020a) Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in egfr overexpressing cancers. J Drug Deliv Sci Technol 60:101928

    CAS  Google Scholar 

  • Duwa R, Jeong J-H, Yook S (2020b) Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2020.11.015

    Article  Google Scholar 

  • Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong J-H, Yook S (2019a) Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol Pharm 16:1184–1199

    CAS  PubMed  Google Scholar 

  • Emami F, Yazdi SJM, Na DH (2019b) Poly (lactic acid)/poly (lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. Int J Pharm Investig 49:427–442

    CAS  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    CAS  PubMed  Google Scholar 

  • Farzanehfar P (2018) Comparative review of adult midbrain and striatum neurogenesis with classical neurogenesis. Neurosci Res 134:1–9

    PubMed  Google Scholar 

  • Fernández-Valle T, Gabilondo I, Gómez-Esteban J (2019) International review of neurobiology, vol 146. Elsevier, Amsterdam, pp 281–295

    Google Scholar 

  • Fields CR, Bengoa-Vergniory N, Wade-Martins R (2019) Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci 12:299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald P, Mandel A, Bolton AE, Sullivan AM, Nolan Y (2008) Treatment with phosphotidylglycerol-based nanoparticles prevents motor deficits induced by proteasome inhibition: Implications for Parkinson’s disease. Behav Brain Res 195:271–274

    CAS  PubMed  Google Scholar 

  • Fonseca-Santos B, Gremião MPD, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomed 10:4981

    CAS  Google Scholar 

  • Gambaryan P, Kondrasheva I, Severin E, Guseva A, Kamensky A (2014) Increasing the efficiency of parkinson’s disease treatment using a poly (lactic-co-glycolic acid)(PLGA) based L-DOPA delivery system. Exp Neurobiol 23:246–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K, Nuber S, Sacayon P (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34:9441–9454

    PubMed  PubMed Central  Google Scholar 

  • Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6:268–286

    PubMed  PubMed Central  Google Scholar 

  • Ghochikyan A, Petrushina I, Davtyan H, Hovakimyan A, Saing T, Davtyan A, Cribbs DH, Agadjanyan MG (2014) Immunogenicity of epitope vaccines targeting different B cell antigenic determinants of human α-synuclein: feasibility study. Neurosci Lett 560:86–91

    CAS  PubMed  Google Scholar 

  • Ghosh R, Singh LC, Shohet JM, Gunaratne PH (2013) A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34:807–816

    CAS  PubMed  Google Scholar 

  • Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AA, Butler MS, Rowe DB, O’Neill LA (2018) Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med 10:4066

    Google Scholar 

  • Gupta S (2014) Role of dendritic cells in innate and adaptive immune response in human aging. Exp Gerontol 54:47–52

    CAS  PubMed  Google Scholar 

  • Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R (2018) Dopamine and levodopa prodrugs for the treatment of Parkinson’s disease. Molecules 23:40

    Google Scholar 

  • Henderson MX, Trojanowski JQ, Lee VM-Y (2019) α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709:134316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    CAS  PubMed  Google Scholar 

  • Hong J, Sha S, Zhou L, Wang C, Yin J, Chen L (2015) Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons. Cell Death Dis 6:e1832–e1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K, Chen X, Chen W, Zhang L, Li J, Ye J, Zhang Y, Zhang L, Li C-H, Yin L (2018) Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine 14:1123–1136

    CAS  PubMed  Google Scholar 

  • Hughes DP, Thomas DG, Giordano TJ, Baker LH, Mcdonagh KT (2004) Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 64:2047–2053

    CAS  PubMed  Google Scholar 

  • Irwin DJ, Lee VM-Y, Trojanowski JQ (2013) Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 14:626–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141

    CAS  PubMed  Google Scholar 

  • Jankovic J, Aguilar LG (2008) Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 4:743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahana M, Weizman A, Gabay M, Loboda Y, Segal-Gavish H, Gavish A, Barhum Y, Offen D, Finberg J, Allon N (2020) Liposome-based targeting of dopamine to the brain: a novel approach for the treatment of Parkinson’s disease. Mol Psychiatry. https://doi.org/10.1038/s41380-020-0742-4

    Article  PubMed  Google Scholar 

  • Kalia L & Lang A (2015) Parkinson’s disease. Lancet 386:896–912. Molecular therapy: methods & clinical Development.

    CAS  PubMed  Google Scholar 

  • Kang YS, Jung HJ, Oh JS, Song DY (2016) Use of PEGylated immunoliposomes to deliver dopamine across the blood-brain barrier in a rat model of Parkinson’s disease. CNS Neurosci Ther 22:817–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannarkat GT, Boss JM, Tansey MG (2013) The role of innate and adaptive immunity in Parkinson’s disease. J Parkinsons Dis 3:493–514

    PubMed  PubMed Central  Google Scholar 

  • Kim C, Spencer B, Rockenstein E, Yamakado H, Mante M, Adame A, Fields JA, Masliah D, Iba M, Lee H-J (2018a) Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener 13:1–18

    PubMed  PubMed Central  Google Scholar 

  • Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, Park MJ, Lee M, Choi S, Kwon SH (2018b) Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat Nanotechnol 13:812–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    CAS  PubMed  Google Scholar 

  • Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, Perlmutter JS (2012) Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol 69:1326–1331

    PubMed  PubMed Central  Google Scholar 

  • Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038

    CAS  PubMed  Google Scholar 

  • Leal MC, Casabona JC, Puntel M, Pitossi F (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee VM-Y, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological α-synuclein: new targets for drug discovery. Neuron 52:33–38

    CAS  PubMed  Google Scholar 

  • Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL (2002) Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53→ Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc Natl Acad Sci 99:8968–8973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-J, Bae E-J, Lee S-J (2014) Extracellular α-synuclein—a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10:92–98

    CAS  PubMed  Google Scholar 

  • Lee JS, Youn YH, Kwon IK, Ko NR (2018) Recent advances in quantum dots for biomedical applications. Int J Pharm Investig 48:209–214

    CAS  Google Scholar 

  • Lewitt PA (2008) Levodopa for the treatment of Parkinson’s disease. N Engl J Med 359:2468–2476

    CAS  PubMed  Google Scholar 

  • Leyva-Gomez G, Cortes H, Magana JJ, Leyva-García N, Quintanar-Guerrero D, Florán B (2015) Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discov Today 20:824–837

    CAS  PubMed  Google Scholar 

  • Lindström V, Ihse E, Fagerqvist T, Bergström J, Nordström E, Möller C, Lannfelt L, Ingelsson M (2014) Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson’s disease and other Lewy body disorders. Immunotherapy 6:141–153

    PubMed  Google Scholar 

  • Liu Y, Xie X, Xia L-P, Lv H, Lou F, Ren Y, He Z-Y, Luo X-G (2017a) Peripheral immune tolerance alleviates the intracranial lipopolysaccharide injection-induced neuroinflammation and protects the dopaminergic neurons from neuroinflammation-related neurotoxicity. J Neuroinflammation 14:223

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Huang Y, Cao B-B, Qiu Y-H, Peng Y-P (2017b) Th17 cells induce dopaminergic neuronal death via LFA-1/ICAM-1 interaction in a mouse model of Parkinson’s disease. Mol Neurobiol 54:7762–7776

    CAS  PubMed  Google Scholar 

  • Liu C, Huang H, Ma L, Fang X, Wang C, Yang Y (2019) Modulation of β-amyloid aggregation by graphene quantum dots. R Soc Open Sci 6:190271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Li M, Xu M, Wang Z, Zeng Z, Li Y, Zhang Y, You R, Li C-H, Guan Y-Q (2020) Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson’s disease mice. Mater Sci Eng C 114:111028

    CAS  Google Scholar 

  • Lotankar S, Prabhavalkar KS, Bhatt LK (2017) Biomarkers for Parkinson’s disease: recent advancement. Neurosci Bull 33:585–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro JA, Gomes B, Coelho MA, de Carmo Pereira M, Rocha S (2015) Immunoliposomes doubly targeted to transferrin receptor and to α-synuclein. Future Sci OA. https://doi.org/10.4155/fso.15.71

    Article  PubMed  PubMed Central  Google Scholar 

  • Malishev R, Arad E, Bhunia SK, Shaham-Niv S, Kolusheva S, Gazit E, Jelinek R (2018) Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots. Chem Commun 54:7762–7765

    CAS  Google Scholar 

  • Mandler M, Valera E, Rockenstein E, Weninger H, Patrick C, Adame A, Santic R, Meindl S, Vigl B, Smrzka O (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127:861–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandler M, Valera E, Rockenstein E, Mante M, Weninger H, Patrick C, Adame A, Schmidhuber S, Santic R, Schneeberger A (2015) Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener 10:1–15

    Google Scholar 

  • Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29:3561–3573

    CAS  PubMed  Google Scholar 

  • Martinez B, Peplow PV (2018) Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease. Neural Regen Res 13:1493

    PubMed  PubMed Central  Google Scholar 

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T (2005) Effects of α-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868

    CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 6:e19338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mcginnis GJ, Friedman D, Young KH, Torres ERS, Thomas CR Jr, Gough MJ, Raber J (2017) Neuroinflammatory and cognitive consequences of combined radiation and immunotherapy in a novel preclinical model. Oncotarget 8:9155

    PubMed  Google Scholar 

  • Mcguire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM (2001) Tumor necrosis factor α is toxic to embryonic mesencephalic dopamine neurons. Exp Neurobiol 169:219–230

    CAS  Google Scholar 

  • Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, Anisman H, Hayley S, Park DS (2007) Involvement of interferon-γ in microglial-mediated loss of dopaminergic neurons. J Neurosci 27:3328–3337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Advances in research on neurodegeneration. Springer, Vienna, pp 277–290

    Google Scholar 

  • Navarro HA, Sánz-Aiz A, Izquierdo L, Jiménez FJJ (2009) Syndrome of inappropriate antidiuretic hormone secretion possibly associated with amantadine therapy in Parkinson disease. Clin Neuropharmacol 32:167–168

    Google Scholar 

  • Niu S, Zhang L-K, Zhang L, Zhuang S, Zhan X, Chen W-Y, Du S, Yin L, You R, Li C-H (2017) Inhibition by multifunctional magnetic nanoparticles loaded with Alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 7:344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowacek A, Kosloski LM, Gendelman HE (2009) Neurodegenerative disorders and nanoformulated drug development. Nanomedicine 4:541–555

    CAS  PubMed  Google Scholar 

  • Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee Y-K (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7:6858–6867

    CAS  PubMed  Google Scholar 

  • Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LKS, Saxena PN, Arun J, Chaudhari BP, Patel DK (2015) Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 9:4850–4871

    CAS  PubMed  Google Scholar 

  • Pahwa R, Lyons KE (2009) Levodopa-related wearing-off in Parkinson’s disease: identification and management. Curr Med Res Opin 25:841–849

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) Blood–brain barrier delivery. Drug Discov Today 12:54–61

    CAS  PubMed  Google Scholar 

  • Park S-W, Yi J-H, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor γ agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320:1002–1012

    CAS  PubMed  Google Scholar 

  • Perez A, Guan L, Sutherland K, Cao C (2016) Immune system and Parkinson’s disease. Arch Med 8:1–6

    Google Scholar 

  • Picascia A, Grimaldi V, Iannone C, Soricelli A, Napoli C (2015) Innate and adaptive immune response in stroke: focus on epigenetic regulation. J Neuroimmunol 289:111–120

    CAS  PubMed  Google Scholar 

  • Qian L, Flood PM (2008) Microglial cells and Parkinson’s disease. Immunol Res 41:155

    CAS  PubMed  Google Scholar 

  • Rana S, Bajaj A, Mout R, Rotello VM (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64:200–216

    CAS  PubMed  Google Scholar 

  • Reddy MK, Wu L, Kou W, Ghorpade A, Labhasetwar V (2008) Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl Biochem Biotechnol 151:565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AD, Stone DK, Mosley RL, Gendelman HE (2009) Proteomic studies of nitrated alpha-synuclein microglia regulation by CD4+ CD25+ T cells. J Proteome Res 8:3497–3511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha EM, De Miranda B, Sanders LH (2018) Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 109:249–257

    CAS  PubMed  Google Scholar 

  • Saeedi M, Eslamifar M, Khezri K, Dizaj SM (2019) Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 111:666–675

    CAS  PubMed  Google Scholar 

  • Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47

    CAS  PubMed  Google Scholar 

  • Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D, Jin H, Anantharam V (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinson’s Dis 3:1–15

    CAS  Google Scholar 

  • Saunders JaH, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, Meza JL, Santamaria PM, Bertoni JM, Murman DL (2012) CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol 7:927–938

    PubMed  PubMed Central  Google Scholar 

  • Savitt D, Jankovic J (2019) Targeting α-synuclein in Parkinson’s disease: progress towards the development of disease-modifying therapeutics. Drugs 79:797–810

    CAS  PubMed  Google Scholar 

  • Schlaudraff F, Gründemann J, Fauler M, Dragicevic E, Hardy J, Liss B (2014) Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson’s disease. Neurobiol Aging 35:2302–2315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneeberger A, Mandler M, Mattner F, Schmidt W (2012) Vaccination for Parkinson’s disease. Parkinsonism Relat Disord 18:S11–S13

    PubMed  Google Scholar 

  • Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL (2020) Immunotherapy for Parkinson’s disease. Neurobiol Dis 137:104760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    PubMed  Google Scholar 

  • Song WJ, Du JZ, Sun TM, Zhang PZ, Wang J (2010) Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6:239–246

    CAS  PubMed  Google Scholar 

  • Sonninen T-M, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, Wojciechowski S, Puttonen K, Naumenko N, Goldsteins G, Laham-Karam N (2020) Metabolic alterations in Parkinson’s disease astrocytes. Sci Rep 10:1–14

    Google Scholar 

  • Stone DK, Reynolds AD, Mosley RL, Gendelman HE (2009) Innate and adaptive immunity for the pathobiology of Parkinson’s disease. Antioxid Redox Signal 11:2151–2166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29:1690–1701

    CAS  PubMed  Google Scholar 

  • Tamburrino A, Churchill MJ, Wan OW, Colino-Sanguino Y, Ippolito R, Bergstrand S, Wolf DA, Herz NJ, Sconce MD, Björklund A (2015) Cyclosporin promotes neurorestoration and cell replacement therapy in pre-clinical models of Parkinson’s disease. Acta Neuropathol Commun 3:1–14

    Google Scholar 

  • Tan E-K, Chao Y-X, West A, Chan L-L, Poewe W, Jankovic J (2020) Parkinson disease and the immune system—associations, mechanisms and therapeutics. Nat Rev Neurol 16:303–318

    PubMed  Google Scholar 

  • Tonda-Turo C, Origlia N, Mattu C, Accorroni A, Chiono V (2018) Current limitations in the treatment of Parkinson’s and Alzheimer’s diseases: state-of-the-art and future perspective of polymeric carriers. Curr Med Chem 25:5755–5771

    CAS  PubMed  Google Scholar 

  • Valera E, Masliah E (2016) Therapeutic approaches in Parkinson’s disease and related disorders. J Neurochem 139:346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valera E, Spencer B, Masliah E (2016) Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13:179–189

    CAS  PubMed  Google Scholar 

  • Van Der Perren A, Macchi F, Toelen J, Carlon MS, Maris M, De Loor H, Kuypers DR, Gijsbers R, Van Den Haute C, Debyser Z (2015) FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging 36:1559–1568

    PubMed  Google Scholar 

  • Villadiego J, Labrador-Garrido A, Franco JM, Leal-Lasarte M, De Genst EJ, Dobson CM, Pozo D, Toledo-Aral JJ, Roodveldt C (2018) Immunization with α-synuclein/Grp94 reshapes peripheral immunity and suppresses microgliosis in a chronic Parkinsonism model. Glia 66:191–205

    PubMed  Google Scholar 

  • Villoslada P, Moreno B, Melero I, Pablos JL, Martino G, Uccelli A, Montalban X, Avila J, Rivest S, Acarin L (2008) Immunotherapy for neurological diseases. Clin Immunol 128:294–305

    CAS  PubMed  Google Scholar 

  • Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM-Y (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gao G, Duan C, Yang H (2019) Progress of immunotherapy of anti-α-synuclein in Parkinson’s disease. Biomed Pharmacother 115:108843

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Goñi F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85:1162–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousaf M, Huang H, Li P, Wang C, Yang Y (2017) Fluorine functionalized graphene quantum dots as inhibitor against hIAPP amyloid aggregation. ACS Chem Neurosci 8:1368–1377

    CAS  PubMed  Google Scholar 

  • Yuan H, Zhang Z-W, Liang L-W, Shen Q, Wang X-D, Ren S-M, Ma H-J, Jiao S-J, Liu P (2010) Treatment strategies for Parkinson’s disease. Neurosci Bull 26:66–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun SP, Kam T-I, Panicker N, Kim S, Oh Y, Park J-S, Kwon S-H, Park YJ, Karuppagounder SS, Park H (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24:931–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zella MAS, Metzdorf J, Ostendorf F, Maass F, Muhlack S, Gold R, Haghikia A, Tönges L (2019a) Novel immunotherapeutic approaches to target alpha-synuclein and related neuroinflammation in Parkinson’s disease. Cells 8:105

    Google Scholar 

  • Zella SM, Metzdorf J, Ciftci E, Ostendorf F, Muhlack S, Gold R, Tönges L (2019b) Emerging immunotherapies for Parkinson disease. Neurol Ther 8:29–44

    PubMed  Google Scholar 

  • Zhang G, Xia Y, Wan F, Ma K, Guo X, Kou L, Yin S, Han C, Liu L, Huang J (2018a) New perspectives on roles of alpha-synuclein in Parkinson’s disease. Front Aging Neurosci 10:370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang W, Yu DX, Xiao Z, He Z (2018b) Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine 13:2341–2371

    CAS  PubMed  Google Scholar 

  • Zhao L, Wang Z (2019) MicroRNAs: game changers in the regulation of α-synuclein in Parkinson’s disease. Parkinsons Dis. https://doi.org/10.1155/2019/1743183

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (Grant Nos: NRF-2018R1D1A1B07040858 and NRF-2016R1A6A1A0301132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jee-Heon Jeong or Simmyung Yook.

Ethics declarations

Conflict of interest

All authors (R. Duwa, J.-H. Jeong, and S. Yook) declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duwa, R., Jeong, JH. & Yook, S. Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson’s disease. J. Pharm. Investig. 51, 465–481 (2021). https://doi.org/10.1007/s40005-021-00521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-021-00521-3

Keywords

Navigation