Skip to main content
Log in

TRPM7 Mediates BSCB Disruption After Spinal Cord Injury by Regulating the mTOR/JMJD3 Axis in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

After spinal cord injury (SCI), secondary injuries including blood cells infiltration followed by the production of inflammatory mediators are led by blood-spinal cord barrier (BSCB) breakdown. Therefore, preventing BSCB damage could alleviate the secondary injury progresses after SCI. Recently, we reported that transient receptor potential melastatin 7 channel (TRPM7) expression is increased in vascular endothelial cells after injury and thereby mediates BSCB disruption. However, the mechanism by which TRPM7 regulates BSCB disruption has not been examined yet. In current research, we show that TRPM7 mediates BSCB disruption via mammalian target of rapamycin (mTOR) pathway after SCI in rats. After contusion injury at T9 level of spinal cord, mTOR pathway was activated in the endothelial cells of blood vessels and TRPM7 was involved in the activation of mTOR pathway. BSCB disruption, MMP-2/9 activation, and blood cell infiltration after injury were alleviated by rapamycin, a mTOR signaling inhibitor. Rapamycin also conserved the level of tight junction proteins, which were decreased after SCI. Furthermore, mTOR pathway regulated the expression and activation of histone H3K27 demethylase JMJD3, known as a key epigenetic regulator mediating BSCB damage after SCI. In addition, rapamycin inhibited JMJD3 expression, the loss of tight junction molecules, and MMP-2/9 expression in bEnd.3, a brain endothelial cell line, after oxygen-glucose deprivation/reoxygenation. Thus, our results suggest that TRPM7 contributes to the BSCB disruption by regulating JMJD3 expression through the mTOR pathway after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All raw data used and analyzed for the current study are available from the corresponding author on reasonable request.

References

  1. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  PubMed  Google Scholar 

  2. Eli I, Lerner DP, Ghogawala Z (2021) Acute traumatic spinal cord Injury. Neurol Clin 39:471–488. https://doi.org/10.1016/j.ncl.2021.02.004

    Article  PubMed  Google Scholar 

  3. Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY (2021) Blood-spinal cord barrier in spinal cord Injury: a review. J Neurotrauma 38:1203–1224. https://doi.org/10.1089/neu.2020.7413

    Article  PubMed  Google Scholar 

  4. Kumar H, Ropper AE, Lee SH, Han I (2017) Propitious therapeutic modulators to prevent blood-spinal cord barrier disruption in spinal cord Injury. Mol Neurobiol 54:3578–3590. https://doi.org/10.1007/s12035-016-9910-6

    Article  CAS  PubMed  Google Scholar 

  5. Young W (1985) The role of calcium in spinal cord injury. Cent Nerv Syst Trauma 2:109–114. https://doi.org/10.1089/cns.1985.2.109

    Article  CAS  PubMed  Google Scholar 

  6. Inoue K, Branigan D, Xiong ZG (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285:7430–7439. https://doi.org/10.1074/jbc.M109.040485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2 + homeostasis. Science 322:756–760. https://doi.org/10.1126/science.1163493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. https://doi.org/10.1146/annurev.biochem.75.103004.142819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Visser D, Middelbeek J, van Leeuwen FN, Jalink K (2014) Function and regulation of the channel-kinase TRPM7 in health and disease. Eur J Cell Biol 93:455–465. https://doi.org/10.1016/j.ejcb.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Sukumaran P, Schaar A, Singh BB (2015) TRPM7 and its role in neurodegenerative diseases. Channels (Austin) 9:253–261. https://doi.org/10.1080/19336950.2015.1075675

    Article  PubMed  Google Scholar 

  11. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877. https://doi.org/10.1016/s0092-8674(03)01017-1

    Article  CAS  PubMed  Google Scholar 

  12. Aarts MM, Tymianski M (2005) TRPM7 and ischemic CNS injury. Neuroscientist 11:116–123 Doi 10.1177/1073858404272966

    Article  CAS  PubMed  Google Scholar 

  13. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A, Zhong X, Sun CLet al (2015) TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 8:11. https://doi.org/10.1186/s13041-015-0102-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12: 1300–1307 https://doi.org/10.1038/nn.2395

  15. Park CS, Lee JY, Choi HY, Yune TY (2022) Suppression of transient receptor potential melastatin 7 by Carvacrol protects against injured spinal cord by inhibiting blood-spinal cord barrier disruption. J Neurotrauma 39:735–749. https://doi.org/10.1089/neu.2021.0338

    Article  PubMed  Google Scholar 

  16. Liu L, Wu N, Wang Y, Zhang X, Xia B, Tang J, Cai J, Zhao Z, Liao Q, Wang J (2019) TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling. J Exp Clin Cancer Res 38:106. https://doi.org/10.1186/s13046-019-1061-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zou ZG, Rios FJ, Montezano AC, Touyz RM (2019) TRPM7, Magnesium, and signaling. Int J Mol Sci 20. https://doi.org/10.3390/ijms20081877

  18. Lu D, Qu J, Sun L, Li Q, Ling H, Yang N, Ma T, Wang Q, Li M, Zhang K al (2017) Ca2+/Mg2 + homeostasisrelated TRPM7 channel mediates chondrocyte hypertrophy via regulation of the PI3KAkt signaling pathway. Mol Med Rep 16:5699–5705. https://doi.org/10.3892/mmr.2017.7300

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Zu H, Zhao D, Yang K, Tian S, Yu X, Lu F, Liu B, Yu X, Wang B al (2017) Ion channel functional protein kinase TRPM7 regulates mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: in vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater 63:369–382. https://doi.org/10.1016/j.actbio.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  20. Van Skike CE, Jahrling JB, Olson AB, Sayre NL, Hussong SA, Ungvari Z, Lechleiter JD, Galvan V (2018) Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 314:H693–H703. https://doi.org/10.1152/ajpheart.00570.2017

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Tian C, Wu J, Zhang Y, Wang J, Kong Q, Mu L, Sun B, Ai T, Wang Y al (2020) MicroRNA-182 exacerbates blood-brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia. FASEB J 34:13762–13775. https://doi.org/10.1096/fj.201903092R

    Article  CAS  PubMed  Google Scholar 

  22. Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park S, Yune TY (2010) Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology 151:3815–3826 Doi 10.1210/en.2009 – 1416

    Article  CAS  PubMed  Google Scholar 

  23. Lee JY, Na WH, Choi HY, Lee KH, Ju BG, Yune TY (2016) Jmjd3 mediates blood-spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis 95:66–81. https://doi.org/10.1016/j.nbd.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  24. Park CS, Lee JY, Choi HY, Ju BG, Youn I, Yune TY (2019) Protocatechuic acid improves functional recovery after spinal cord injury by attenuating blood-spinal cord barrier disruption and hemorrhage in rats. Neurochem Int 124:181–192. https://doi.org/10.1016/j.neuint.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  25. Park CS, Lee JY, Choi HY, Lee K, Heo Y, Ju BG, Choo HP, Yune TY (2020) Gallic acid attenuates blood-spinal cord barrier disruption by inhibiting Jmjd3 expression and activation after spinal cord injury. Neurobiol Dis 145:105077. https://doi.org/10.1016/j.nbd.2020.105077

    Article  CAS  PubMed  Google Scholar 

  26. Lee K, Na W, Lee JY, Na J, Cho H, Wu H, Yune TY, Kim W-S, Ju B-G (2012) Molecular mechanism of Jmjd3-mediated interleukin-6 gene regulation in endothelial cells underlying spinal cord injury. J Neurochem 122:272–282. https://doi.org/10.1111/j.1471-4159.2012.07786.x

    Article  CAS  PubMed  Google Scholar 

  27. Lee JY, Choi HY, Na WH, Ju BG, Yune TY (2015) 17beta-estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats. Endocrinology 156:1838–1850. https://doi.org/10.1210/en.2014-1832

    Article  CAS  PubMed  Google Scholar 

  28. Mabon PJ, Weaver LC, Dekaban GA (2000) Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new anti-inflammatory treatment. Exp Neurol 166:52–64. https://doi.org/10.1006/exnr.2000.7488

    Article  CAS  PubMed  Google Scholar 

  29. Lee JY, Choi HY, Yune TY (2015) MMP-3 secreted from endothelial cells of blood vessels after spinal cord injury activates microglia, leading to oligodendrocyte cell death. Neurobiol Dis 82:141–151. https://doi.org/10.1016/j.nbd.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  30. Na W, Shin JY, Lee JY, Jeong S, Kim WS, Yune TY, Ju BG (2017) Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. J Cereb Blood Flow Metab 37:3695–3708. https://doi.org/10.1177/0271678X17701156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhi Y, Wang H, Huang B, Yan G, Yan LZ, Zhang W, Zhang J (2021) Panax Notoginseng Saponins suppresses TRPM7 via the PI3K/AKT pathway to inhibit hypertrophic scar formation in vitro. Burns 47:894–905. https://doi.org/10.1016/j.burns.2020.10.003

    Article  PubMed  Google Scholar 

  32. Abumaria N, Li W, Clarkson AN (2019) Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell Mol Life Sci 76:3301–3310. https://doi.org/10.1007/s00018-019-03124-2

    Article  CAS  PubMed  Google Scholar 

  33. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai Bet al et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081. https://doi.org/10.1038/nn.2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luan Y, Chen M, Zhou L (2021) Erratum to MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway [Brain res. Bull. 128 (2017) 68–75]. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2021.05.027

    Article  PubMed  Google Scholar 

  35. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Tateda S, Yahata K, Itoi E (2012) The role of mTOR signaling pathway in spinal cord injury. Cell Cycle 11:3175–3179. https://doi.org/10.4161/cc.21262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li W, Huang R, Chen Z, Yan LJ, Simpkins JW, Yang SH (2014) PTEN degradation after ischemic stroke: a double-edged sword. Neuroscience 274:153–161. https://doi.org/10.1016/j.neuroscience.2014.05.027

    Article  CAS  PubMed  Google Scholar 

  37. Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE, Ghio AJ (2003) Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 278:28258–28263. https://doi.org/10.1074/jbc.M303318200

    Article  CAS  PubMed  Google Scholar 

  38. Sahni J, Scharenberg AM (2008) TRPM7 ion channels are required for sustained phosphoinositide 3-kinase signaling in lymphocytes. Cell Metab 8:84–93. https://doi.org/10.1016/j.cmet.2008.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo Y, Wu JY, Lu MH, Shi Z, Na N, Di JM (2016) Carvacrol Alleviates Prostate Cancer Cell Proliferation, Migration, and Invasion through Regulation of PI3K/Akt and MAPK Signaling Pathways. Oxid Med Cell Longev 2016: 1469693 https://doi.org/10.1155/2016/1469693

  40. Burchfield JS, Li Q, Wang HY, Wang RF (2015) JMJD3 as an epigenetic regulator in development and disease. Int J Biochem Cell Biol 67:148–157. https://doi.org/10.1016/j.biocel.2015.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Liu L, Yuan X, Wei Y, Wei X (2019) JMJD3 in the regulation of human diseases. Protein Cell 10:864–882. https://doi.org/10.1007/s13238-019-0653-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094. https://doi.org/10.1016/j.cell.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  43. Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS (2008) Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev 22:1490–1500. https://doi.org/10.1101/gad.1662308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dhingra R, Gang H, Wang Y, Biala AK, Aviv Y, Margulets V, Tee A, Kirshenbaum LA (2013) Bidirectional regulation of nuclear factor-kappab and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circ Heart Fail 6:335–343. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000061

    Article  CAS  PubMed  Google Scholar 

  45. Nadolni W, Immler R, Hoelting K, Fraticelli M, Ripphahn M, Rothmiller S, Matsushita M, Boekhoff I, Gudermann T, Sperandio M al (2020) TRPM7 kinase is essential for Neutrophil recruitment and function via regulation of Akt/mTOR signaling. Front Immunol 11:606893. https://doi.org/10.3389/fimmu.2020.606893

    Article  CAS  PubMed  Google Scholar 

  46. Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, Matinlinna JP, Zheng Y al (2021) TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun 12:2885. https://doi.org/10.1038/s41467-021-23005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schappe MS, Szteyn K, Stremska ME, Mendu SK, Downs TK, Seegren PV, Mahoney MA, Dixit S, Krupa JK, Stipes EJ et al (2018) Chanzyme TRPM7 Mediates the Ca(2+) Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity 48: 59–74 e55 https://doi.org/10.1016/j.immuni.2017.11.026

  48. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC (2002) Cell death in models of spinal cord injury. Prog Brain Res 137:37–47

    Article  PubMed  Google Scholar 

  49. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L (1998) Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151:77–88. https://doi.org/10.1006/exnr.1998.6785

    Article  CAS  PubMed  Google Scholar 

  50. Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K, Kishimoto T, Toyama Y al (2004) Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 76:265–276. https://doi.org/10.1002/jnr.20044

    Article  CAS  PubMed  Google Scholar 

  51. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. https://doi.org/10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  52. Zhou Z, Chen S, Zhao H, Wang C, Gao K, Guo Y, Shen Z, Wang Y, Wang H, Mei X (2016) Probucol inhibits neural cell apoptosis via inhibition of mTOR signaling pathway after spinal cord injury. Neuroscience 329:193–200. https://doi.org/10.1016/j.neuroscience.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  53. Gao K, Wang YS, Yuan YJ, Wan ZH, Yao TC, Li HH, Tang PF, Mei XF (2015) Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/beta-catenin signaling pathway. Neural Regen Res 10:951–957. https://doi.org/10.4103/1673-5374.158360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2022R1A2B5B02002106) and by a grant from Kyung Hee University in 2021 (KHU-20210142).

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2022R1A2B5B02002106) and by a grant from Kyung Hee University in 2021 (KHU-20210142).

Author information

Authors and Affiliations

Authors

Contributions

Chan Sol Park: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Original Draft, Writing - Review & Editing. Jee Youn Lee: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Original Draft, Writing - Review & Editing, Funding acquisition. Bong Gun Ju: Conceptualization, Investigation. Tae Young Yune: Conceptualization, Supervision, Project administration, Fundin g acquisition.

Corresponding author

Correspondence to Tae Young Yune.

Ethics declarations

Competing Interests

The authors have no relevant financial interests to disclose.

Ethics Approval

All animal experiments were performed in accordance with the Guidelines and Policies for Rodent Survival Surgery provided by the Animal Care Committee of the Kyung Hee University (Permission number: KHUASP(SE)-17-059).

Consent to Participate

Not applicable.

Consent for Publication

All authors have given fnal approval of the version and agreed with the publication of this study here.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.S., Lee, J.Y., Seo, K.J. et al. TRPM7 Mediates BSCB Disruption After Spinal Cord Injury by Regulating the mTOR/JMJD3 Axis in Rats. Mol Neurobiol 61, 662–677 (2024). https://doi.org/10.1007/s12035-023-03617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03617-z

Keywords

Navigation