Skip to main content

Advertisement

Log in

Targeting Ferroptosis Promotes Functional Recovery by Mitigating White Matter Injury Following Acute Carbon Monoxide Poisoning

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Survivors experiencing acute carbon monoxide poisoning (ACMP) tend to develop white matter injury (WMI). The mechanism of ACMP-induced WMI remains unclear. Considering the role of ferroptosis in initiating oligodendrocyte damage to deteriorate WMI, exploring therapeutic options to attenuate ferroptosis is a feasible approach to alleviating WMI. Our results indicated that ACMP induced accumulation of iron and reactive oxygen species (ROS) eventually leading to WMI and motor impairment after ACMP. Furthermore, ferrostatin-1 reduced iron and ROS deposition to alleviate ferroptosis, thereafter reducing WMI to promote the recovery of motor function. The nuclear factor erythroid-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway was found to be involved in alleviating ferroptosis as seen with the administration of ferrostatin-1. The present study rationalizes that targeting ferroptosis to alleviate WMI is a feasible therapeutic strategy for managing ACMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ACMP:

Acute carbon monoxide poisoning

MRI:

Magnetic resonance imaging

WMI:

White matter injury

RCD:

Regulated cell death

ROS:

Reactive oxygen species

CNS:

Central nervous system

SCI:

Spinal cord injury

CIS:

Cerebral ischemic stroke

ICH:

Intracerebral hemorrhage

TBI:

Traumatic brain injury

SAH:

Subarachnoid hemorrhage

IREB2:

Iron-responsive element binding protein 2

PTGS2:

Prostaglandin-endoperoxide synthase 2

LFB:

Luxol fast blue

OFT:

Open field test

BMT:

Beam walking test

Hb:

Hemoglobin

PBS:

Phosphate-buffered solution

DHE:

Dihydroethidium

MDA:

Malondialdehyde

IF:

Immunofluorescent

IHC:

Immunohistochemistry

BSA:

Bovine serum albumin

BCA:

Bicinchoninic acid

TEM:

Transmission electron microscopy

References

  1. Huang YQ, Peng ZR, Huang FL, Yang AL (2020) Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regen Res 15(12):2286–2295. https://doi.org/10.4103/1673-5374.284995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu L, Liu X, Guo C, Wang C, Zhao J, Zhang X, Li W, Zhang P, et al. (2022) Inhibition of ROCK2 kinase activity improved behavioral deficits and reduced neuron damage in a DEACMP rat model. Brain Res Bull 180:24–30. https://doi.org/10.1016/j.brainresbull.2021.12.018

    Article  CAS  PubMed  Google Scholar 

  3. Guo D, Hu H, Pan S (2020) Oligodendrocyte dysfunction and regeneration failure: a novel hypothesis of delayed encephalopathy after carbon monoxide poisoning. Med Hypotheses 136:109522. https://doi.org/10.1016/j.mehy.2019.109522

    Article  CAS  PubMed  Google Scholar 

  4. Han ST, Bhopale VM, Thom SR (2007) Xanthine oxidoreductase and neurological sequelae of carbon monoxide poisoning. Toxicol Lett 170(2):111–115. https://doi.org/10.1016/j.toxlet.2007.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao H, Xu L, Zhou B, Li L, Sun H, Guo X, Ren L (2021) Analysis of risk factors of delayed encephalopathy after acute carbon monoxide poisoning. J Neurorestoratol 9(4):245–254. https://doi.org/10.26599/JNR.2021.9040020

    Article  CAS  Google Scholar 

  6. Zhang J, Guo Y, Li W, Li G, Chen Y (2020) The efficacy of N-butylphthalide and dexamethasone combined with hyperbaric oxygen on delayed encephalopathy after acute carbon monoxide poisoning. Drug Des Devel Ther 14:1333–1339. https://doi.org/10.2147/dddt.s217010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rose JJ, Wang L, Xu Q, McTiernan CF, Shiva S, Tejero J, Gladwin MT (2017) Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. Am J Respir Crit Care Med 195(5):596–606. https://doi.org/10.1164/rccm.201606-1275CI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghorbani M, Moallem S, Abnous K, Tabatabaee Yazdi SA, Movassaghi AR, Azizzadeh M, Mohamadpour AH (2013) The effect of granulocyte colony-stimulating factor administration on carbon monoxide neurotoxicity in rats. Drug Chem Toxicol 36(1):102–108. https://doi.org/10.3109/01480545.2012.737802

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Xu L, Xie R, Dang Y, Xia X, He J, Zhao J (2020) A meta-analysis on the efficiency of the time window of hyperbaric oxygen treatment on disorders of consciousness in China. J Neurorestoratol 8(4):270–280. https://doi.org/10.26599/JNR.2020.9040025

    Article  Google Scholar 

  10. Hou X, Ma L, Wu L, Zhang Y, Ge H, Li Z, Gao Y, et al. (2013) Diffusion tensor imaging for predicting the clinical outcome of delayed encephalopathy of acute carbon monoxide poisoning. Eur Neurol 69(5):275–280. https://doi.org/10.1159/000346117

    Article  PubMed  Google Scholar 

  11. Chen NC, Huang CW, Lui CC, Lee CC, Chang WN, Huang SH, Chen C, Chang CC (2013) Diffusion-weighted imaging improves prediction in cognitive outcome and clinical phases in patients with carbon monoxide intoxication. Neuroradiology 55(1):107–115. https://doi.org/10.1007/s00234-012-1102-0

    Article  PubMed  Google Scholar 

  12. Tsai PH, Chou MC, Chiang SW, Chung HW, Liu HS, Kao HW, Chen CY (2017) Early white matter injuries in patients with acute carbon monoxide intoxication: a tract-specific diffusion kurtosis imaging study and STROBE compliant article. Medicine (Baltimore) 96(5):e5982. https://doi.org/10.1097/md.0000000000005982

    Article  PubMed  Google Scholar 

  13. Wei X, Yi X, Zhu XH, Jiang DS (2020) Posttranslational modifications in ferroptosis. Oxid Med Cell Longev 2020:8832043. https://doi.org/10.1155/2020/8832043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88. https://doi.org/10.1038/s41419-020-2298-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Kang R, Kroemer G, Tang D (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18(5):280–296. https://doi.org/10.1038/s41571-020-00462-0

    Article  CAS  PubMed  Google Scholar 

  16. Akyol S, Erdogan S, Idiz N, Celik S, Kaya M, Ucar F, Dane S, Akyol O (2014) The role of reactive oxygen species and oxidative stress in carbon monoxide toxicity: an in-depth analysis. Redox Rep 19(5):180–189. https://doi.org/10.1179/1351000214y.0000000094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coburn RF (2021) Carbon Monoxide (CO), Nitric oxide, and hydrogen sulfide signaling during acute CO poisoning. Front Pharmacol 12:830241. https://doi.org/10.3389/fphar.2021.830241

    Article  CAS  PubMed  Google Scholar 

  18. Yeung MSY, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, Brundin L, Frisén J (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566(7745):538–542. https://doi.org/10.1038/s41586-018-0842-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai X, Chen J, Xu F, Zhao J, Cai W, Sun Z, Hitchens TK, Foley LM, et al. (2020) TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J Cereb Blood Flow Metab 40(3):639–655. https://doi.org/10.1177/0271678x19830791

    Article  CAS  PubMed  Google Scholar 

  20. Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoël I, Stys PK, David S (2020) Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J Neurosci 40(48):9327–9341. https://doi.org/10.1523/jneurosci.1749-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge H, Xue X, Xian J, Yuan L, Wang L, Zou Y, Zhong J, Jiang Z, et al. (2022) Ferrostatin-1 alleviates white matter injury via decreasing ferroptosis following spinal cord injury. Mol Neurobiol 59(1):161–176. https://doi.org/10.1007/s12035-021-02571-y

    Article  CAS  PubMed  Google Scholar 

  22. Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, et al. (2020) Ferroptosis in acute central nervous system injuries: the future direction? Front Cell Dev Biol 8:594. https://doi.org/10.3389/fcell.2020.00594

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao J, Wu Y, Liang S, Piao X (2022) Activation of SSAT1/ALOX15 axis aggravates cerebral ischemia/reperfusion injury via triggering neuronal ferroptosis. Neuroscience 485:78–90. https://doi.org/10.1016/j.neuroscience.2022.01.017

    Article  CAS  PubMed  Google Scholar 

  24. Chen B, Chen Z, Liu M, Gao X, Cheng Y, Wei Y, Wu Z, Cui D, et al. (2019) Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res Bull 153:122–132. https://doi.org/10.1016/j.brainresbull.2019.08.013

    Article  CAS  PubMed  Google Scholar 

  25. Huang L, Zhang Y, Zhao L, Chen Q, Li L (2022) Ferrostatin-1 polarizes microglial cells toward M2 phenotype to alleviate inflammation after intracerebral hemorrhage. Neurocrit Care 36(3):942–954. https://doi.org/10.1007/s12028-021-01401-2

    Article  CAS  PubMed  Google Scholar 

  26. Han R, Wan J, Han X, Ren H, Falck JR, Munnuri S, Yang ZJ, Koehler RC (2021) 20-HETE participates in intracerebral hemorrhage-induced acute injury by promoting cell ferroptosis. Front Neurol 12:763419. https://doi.org/10.3389/fneur.2021.763419

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF, Gao GY, Jiang JY (2019) Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 25(4):465–475. https://doi.org/10.1111/cns.13069

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Gao C, Yan Y, Cheng Z, Chen G, Rui T, Luo C, Gao Y, et al. (2021) Ruxolitinib exerts neuroprotection via repressing ferroptosis in a mouse model of traumatic brain injury. Exp Neurol 342:113762. https://doi.org/10.1016/j.expneurol.2021.113762

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Liu Y, Wu P, Tian Y, Liu B, Wang J, Bihl J, Shi H (2021) Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol 41(2):263–278. https://doi.org/10.1007/s10571-020-00850-1

    Article  CAS  PubMed  Google Scholar 

  30. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR (2018) Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 12:466. https://doi.org/10.3389/fnins.2018.00466

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qiu Y, Cao Y, Cao W, Jia Y, Lu N (2020) The application of ferroptosis in diseases. Pharmacol Res 159:104919. https://doi.org/10.1016/j.phrs.2020.104919

    Article  CAS  PubMed  Google Scholar 

  32. Yumnamcha T, Devi TS, Singh LP (2019) Auranofin mediates mitochondrial dysregulation and inflammatory cell death in human retinal pigment epithelial cells: implications of retinal neurodegenerative diseases. Front Neurosci 13:1065. https://doi.org/10.3389/fnins.2019.01065

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang W, Tian L, Li Y, Wang X, Xia F, Li L, Li J, Zhang Z (2013) Effects of hydrogen-rich saline on rats with acute carbon monoxide poisoning. J Emerg Med 44(1):107–115. https://doi.org/10.1016/j.jemermed.2012.01.065

    Article  PubMed  Google Scholar 

  34. Kraeuter AK, Guest PC, Sarnyai Z (2019) The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 1916:99–103. https://doi.org/10.1007/978-1-4939-8994-2_9

    Article  CAS  PubMed  Google Scholar 

  35. Shi X, Bai H, Wang J, Wang J, Huang L, He M, Zheng X, Duan Z, et al. (2021) Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front Neurol 12:667511. https://doi.org/10.3389/fneur.2021.667511

    Article  PubMed  PubMed Central  Google Scholar 

  36. Luong TN, Carlisle HJ, Southwell A, Patterson PH (2011) Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp 49:2376. https://doi.org/10.3791/2376

  37. Carriel V, Campos A, Alaminos M, Raimondo S, Geuna S (2017) Staining methods for normal and regenerative myelin in the nervous system. Methods Mol Biol 1560:207–218. https://doi.org/10.1007/978-1-4939-6788-9_15

    Article  CAS  PubMed  Google Scholar 

  38. Shi J, Tang R, Zhou Y, Xian J, Zuo C, Wang L, Wang J, Feng H, et al. (2020) Attenuation of white matter damage following deferoxamine treatment in rats after spinal cord injury. World Neurosurg 137:e9–e17. https://doi.org/10.1016/j.wneu.2019.08.246

    Article  PubMed  Google Scholar 

  39. Jiang X, Zhang J, Kou B, Zhang C, Zhong J, Fang X, Huang X, Zhang X, et al. (2020) Ambroxol improves neuronal survival and reduces white matter damage through suppressing endoplasmic reticulum stress in microglia after intracerebral hemorrhage. Biomed Res Int 2020:8131286. https://doi.org/10.1155/2020/8131286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu L, Chen D, Zhu Y, Pan T, Xia D, Cai T, Lin H, Lin J, et al. (2021) GPX4-regulated ferroptosis mediates S100-induced experimental autoimmune hepatitis associated with the Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev 2021:6551069. https://doi.org/10.1155/2021/6551069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 133:144–152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  42. Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C, et al. (2020) FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 17(4):1796–1812. https://doi.org/10.1007/s13311-020-00929-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jay GD, McKindley DS (1997) Alterations in pharmacokinetics of carboxyhemoglobin produced by oxygen under pressure. Undersea Hyperb Med 24(3):165–173

    CAS  PubMed  Google Scholar 

  44. Han S, Nah S, Choi S, Lee YH, Kim GW, Cho YS (2021) Hyperbaric oxygen therapy did not prevent delayed neuropsychiatric sequelae in a prospective observational study with propensity score matching in 224 patients with acute carbon Monoxide Toxicity. J Emerg Med 60(4):498–505. https://doi.org/10.1016/j.jemermed.2020.10.050

    Article  PubMed  Google Scholar 

  45. Jiang YB, Wei KY, Zhang XY, Feng H, Hu R (2019) White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 25(10):1113–1125. https://doi.org/10.1111/cns.13226

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hirschhorn T, Stockwell BR (2019) The development of the concept of ferroptosis. Free Radic Biol Med 133:130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043

    Article  CAS  PubMed  Google Scholar 

  47. Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, et al. (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2(7):e90777. https://doi.org/10.1172/jci.insight.90777

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li S, Zhou C, Zhu Y, Chao Z, Sheng Z, Zhang Y, Zhao Y (2020) Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int Immunopharmacol 90:107179. https://doi.org/10.1016/j.intimp.2020.107179

    Article  CAS  PubMed  Google Scholar 

  49. Sun Y, He L, Wang T, Hua W, Qin H, Wang J, Wang L, Gu W, et al. (2020) Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells. Mol Neurobiol 57(11):4628–4641. https://doi.org/10.1007/s12035-020-02049-3

    Article  CAS  PubMed  Google Scholar 

  50. Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 55(7):6076–6093. https://doi.org/10.1007/s12035-017-0798-6

    Article  CAS  PubMed  Google Scholar 

  51. Li C, Wang R, Zhang Y, Hu C, Ma Q (2021) PIAS3 suppresses damage in an Alzheimer’s disease cell model by inducing the STAT3-associated STAT3/Nestin/Nrf2/HO-1 pathway. Mol Med 27(1):150. https://doi.org/10.1186/s10020-021-00410-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang Z, Ju Y, Dai X, Ni N, Liu Y, Zhang D, Gao H, Sun H, et al. (2021) HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biol 43:101971. https://doi.org/10.1016/j.redox.2021.101971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wei N, Lu T, Yang L, Dong Y, Liu X (2021) Lipoxin A4 protects primary spinal cord neurons from Erastin-induced ferroptosis by activating the Akt/Nrf2/HO-1 signaling pathway. FEBS Open Bio 11(8):2118–2126. https://doi.org/10.1002/2211-5463.13203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang T, Cheng H, Su J, Wang X, Wang Q, Chu J, Li Q (2020) Gastrodin protects against glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway. Toxicol In Vitro 62:104715. https://doi.org/10.1016/j.tiv.2019.104715

    Article  CAS  PubMed  Google Scholar 

  55. Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C, Sun Z, Jiang J (2021) Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol 12:808480. https://doi.org/10.3389/fphar.2021.808480

    Article  CAS  PubMed  Google Scholar 

  56. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, et al. (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(). Cell Death Differ 27(2):662–675. https://doi.org/10.1038/s41418-019-0380-z

    Article  CAS  PubMed  Google Scholar 

  57. Lu J, Xu F, Lu H (2020) LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci 260:118305. https://doi.org/10.1016/j.lfs.2020.118305

    Article  CAS  PubMed  Google Scholar 

  58. Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C, Martín-Sanchez D, Farré-Alins V, et al. (2019) Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. Faseb j 33(8):8961–8975. https://doi.org/10.1096/fj.201900077R

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants obtained from the National Natural Science Foundation of China (grant number 82060245), the Chinese Ministry of Education (grant number 2020–39), and the Science and Technology Project of Guizhou Province (grant number [2020]4Y149).

Author information

Authors and Affiliations

Authors

Contributions

Anyong Yu, Hongfei Ge, and Tianxi Zhang designed this research. Shuhong Wang, Binyuan Xiong, Yin Tian, Quan Hu, Xuheng Jiang, and Ji Zhang performed the experiments. Mo Li and Xin Zhou analyzed the data. Ruilie Wang provided technical support. Shuhong Wang wrote a preliminary draft of the manuscript. Hongfei Ge, Anyong Yu, and Tianxi Zhang designed the experiments and revised the manuscript. Anyong Yu made the hypothesis. All authors discussed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Tianxi Zhang, Hongfei Ge or Anyong Yu.

Ethics declarations

Research Involving Animals

All procedures were approved by the local authorities of Zunyi Medical University for the laboratory use of animals (approve no. KLLY(A)-2021–033). The Ethics Committee of the Affiliated Hospital of Zunyi Medical University supervised all the procedures. All experimental procedures were performed according to China’s animal welfare legislation for the protection of animals used for scientific purposes.

Informed Consent

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xiong, B., Tian, Y. et al. Targeting Ferroptosis Promotes Functional Recovery by Mitigating White Matter Injury Following Acute Carbon Monoxide Poisoning. Mol Neurobiol 61, 1157–1174 (2024). https://doi.org/10.1007/s12035-023-03603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03603-5

Keywords

Navigation