Skip to main content
Log in

Matrine Mediated Immune Protection in MS by Regulating Gut Microbiota and Production of SCFAs

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is clearly an unmet need for more effective and safer treatments for multiple sclerosis (MS). Our previous studies showed a significant therapeutic effect of matrine, a monomer of traditional herbal medicine, on experimental autoimmune encephalomyelitis (EAE) mice. To explore the mechanism of matrine action, we used 16S rRNA sequencing technology to determine the gut microbes in matrine-treated EAE mice and controls. The concentrations of short-chain fatty acids (SCFAs) were then tested by metabonomics. Finally, we established pseudo-sterile mice and transplanted into them fecal microbiota, which had been obtained from the high-dose matrine-treated EAE mice to test the effects of matrine. The results showed that matrine could restore the diversity of gut microbiota and promote the production of SCFAs in EAE mice. Transplantation of fecal microbiota from matrine-treated mice significantly alleviated EAE severity, reduced CNS inflammatory infiltration and demyelination, and decreased the level of IL-17 but increased IL-10 in sera of mice. In conclusion, matrine treatment can regulate gut microbiota and metabolites and halt the progression of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

ABX :

Non-absorbable antibiotics

ANOSIM :

Analysis of similarities

CBA :

Cytometric bead assay

CFA :

Complete Freund’s adjuvant

CNS :

The central nervous system

DMTs :

Disease-modifying therapies

EAE :

Experimental autoimmune encephalomyelitis

FMT :

Fecal microbiological transplantation

MAT :

Matrine

MS :

Multiple sclerosis

NMDS :

Multidimensional scaling

PCA :

Principal component analysis

PCoA :

Principal coordinates analysis

SAA :

Serum amyloid A

SCFAs :

Short chain fatty acids

SFB :

Segmented filamentous bacteria

References

  1. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM et al (2018) Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27(6):1222–1235. https://doi.org/10.1016/j.cmet.2018.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haase S, Wilck N, Haghikia A, Gold R, Mueller DN, Linker RA (2020) The role of the gut microbiota and microbial metabolites in neuroinflammation. Eur J Immunol 50(12):1863–1870. https://doi.org/10.1002/eji.201847807

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X et al (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29(10):787–803. https://doi.org/10.1038/s41422-019-0216-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Angelucci F, Cechova K, Amlerova J, Hort J (2019) Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation 16(1):108. https://doi.org/10.1186/s12974-019-1494-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boddy SL, Giovannelli I, Sassani M, Cooper-Knock J, Snyder MP, Segal E, Elinav E, Barker LA et al (2021) The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med 19(1):13. https://doi.org/10.1186/s12916-020-01885-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fang P, Kazmi SA, Jameson KG, Hsiao EY (2020) The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28(2):201–222. https://doi.org/10.1016/j.chom.2020.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kadowaki A, Quintana FJ (2020) The Gut-CNS axis in multiple sclerosis. Trends Neurosci 43(8):622–634. https://doi.org/10.1016/j.tins.2020.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arnoriaga-Rodriguez M, Mayneris-Perxachs J, Burokas A, Contreras-Rodriguez O, Blasco G, Coll C, Biarnes C, Miranda-Olivos R et al (2020) Obesity impairs short-term and working memory through gut microbial metabolism of aromatic amino acids. Cell Metab 32(4):548–560. https://doi.org/10.1016/j.cmet.2020.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Mangalam AK, Giri S (2022) Role of microbiome and metabolome in the pathobiology of MS. Clin Immunol 235:108934. https://doi.org/10.1016/j.clim.2022.108934

    Article  CAS  PubMed  Google Scholar 

  11. van Langelaar J, van der Vuurst de Vries RM, Janssen M, Wierenga-Wolf AF, Spilt IM, Siepman TA, Dankers W et al (2018) T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain 141(5):1334–1349. https://doi.org/10.1093/brain/awy069

    Article  PubMed  Google Scholar 

  12. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, Duquette P, Prat A (2009) Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 66(3):390–402. https://doi.org/10.1002/ana.21748

    Article  CAS  PubMed  Google Scholar 

  13. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558. https://doi.org/10.1038/nri3871

    Article  CAS  PubMed  Google Scholar 

  14. Khan A, Shal B, Naveed M, Shah FA, Atiq A, Khan NU, Kim YS, Khan S (2019) Matrine ameliorates anxiety and depression-like behaviour by targeting hyperammonemia-induced neuroinflammation and oxidative stress in CCl4 model of liver injury. Neurotoxicology 72:38–50. https://doi.org/10.1016/j.neuro.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  15. Sun P, Sun N, Yin W, Sun Y, Fan K, Guo J, Khan A, He Y et al (2019) Matrine inhibits IL-1beta secretion in primary porcine alveolar macrophages through the MyD88/NF-kappaB pathway and NLRP3 inflammasome. Vet Res 50(1):53. https://doi.org/10.1186/s13567-019-0671-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu N, Kan QC, Zhang XJ, Xv YM, Zhang S, Zhang GX, Zhu L (2014) Upregulation of immunomodulatory molecules by matrine treatment in experimental autoimmune encephalomyelitis. Exp Mol Pathol 97(3):470–476. https://doi.org/10.1016/j.yexmp.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  17. Dou M, Zhou X, Li L, Zhang M, Wang W, Wang M, Jing Y, Ma R et al (2021) Illumination of molecular pathways in multiple sclerosis lesions and the immune mechanism of matrine treatment in EAE, a mouse model of MS. Front Immunol 12:640778. https://doi.org/10.3389/fimmu.2021.640778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kan QC, Zhang HJ, Zhang Y, Li X, Xu YM, Thome R, Zhang ML, Liu N et al (2017) Matrine treatment blocks NogoA-induced neural inhibitory signaling pathway in ongoing experimental autoimmune encephalomyelitis. Mol Neurobiol 54(10):8404–8418. https://doi.org/10.1007/s12035-016-0333-1

    Article  CAS  PubMed  Google Scholar 

  19. Lee JY, Hall JA, Kroehling L, Wu L, Najar T, Nguyen HH, Lin WY, Yeung ST et al (2020) Serum Amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 180(1):79–91. https://doi.org/10.1016/j.cell.2019.11.026

    Article  CAS  PubMed  Google Scholar 

  20. Logue JB, Stedmon CA, Kellerman AM, Nielsen NJ, Andersson AF, Laudon H, Lindstrom ES, Kritzberg ES (2016) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10(3):533–545. https://doi.org/10.1038/ismej.2015.131

    Article  CAS  PubMed  Google Scholar 

  21. Gong S, Lan T, Zeng L, Luo H, Yang X, Li N, Chen X, Liu Z et al (2018) Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J Hepatol 69(1):51–59. https://doi.org/10.1016/j.jhep.2018.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen PX, Li X, Deng SY, Zhao L, Zhang YY, Deng X, Han B, Yu J et al (2021) Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine 64:103227. https://doi.org/10.1016/j.ebiom.2021.103227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T et al (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80(1):115–122. https://doi.org/10.1021/ac0713510

    Article  CAS  PubMed  Google Scholar 

  25. Sormani MP, De Rossi N, Schiavetti I, Carmisciano L, Cordioli C, Moiola L, Radaelli M, Immovilli P et al (2021) Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis. Ann Neurol 89(4):780–789. https://doi.org/10.1002/ana.26028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He A, Merkel B, Brown JW, Ryerson LZ, Kister I, Malpas CB, Sharmin S, Horakova D et al (2020) Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol 19(4):307–316. https://doi.org/10.1016/S1474-4422(20)30067-3

    Article  CAS  PubMed  Google Scholar 

  27. Zettl UK, Hecker M, Aktas O, Wagner T, Rommer PS (2018) Interferon beta-1a and beta-1b for patients with multiple sclerosis: updates to current knowledge. Expert Rev Clin Immunol 14(2):137–153. https://doi.org/10.1080/1744666X.2018.1426462

    Article  CAS  PubMed  Google Scholar 

  28. Yu S, Liu M, Hu K (2019) Natural products: potential therapeutic agents in multiple sclerosis. Int Immunopharmacol 67:87–97. https://doi.org/10.1016/j.intimp.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  29. Pahan K (2011) Immunomodulation of experimental allergic encephalomyelitis by cinnamon metabolite sodium benzoate. Immunopharmacol Immunotoxicol 33(4):586–593. https://doi.org/10.3109/08923973.2011.561861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sacks D, Baxter B, Campbell BC, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U et al (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 13(6):612–632. https://doi.org/10.1177/1747493018778713

    Article  PubMed  Google Scholar 

  31. Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, Patel B, Mazzola MA et al (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015. https://doi.org/10.1038/ncomms12015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498. https://doi.org/10.1016/j.cell.2009.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591. https://doi.org/10.1038/nrendo.2015.128

    Article  CAS  PubMed  Google Scholar 

  34. Doifode T, Giridharan VV, Generoso JS, Bhatti G, Collodel A, Schulz PE, Forlenza OV, Barichello T (2021) The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol Res 164:105314. https://doi.org/10.1016/j.phrs.2020.105314

    Article  CAS  PubMed  Google Scholar 

  35. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672. https://doi.org/10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  36. Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285(29):22082–22090. https://doi.org/10.1074/jbc.M110.117713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ (2006) Whole-genome transcription profiling reveals genes upregulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans.”. J Bacteriol 188(12):4340–4349. https://doi.org/10.1128/JB.00137-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66(4):1654–1661. https://doi.org/10.1128/AEM.66.4.1654-1661.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M (2019) Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci 20(5):1214. https://doi.org/10.3390/ijms20051214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  41. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671. https://doi.org/10.1016/j.chom.2015.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eslick S, Thompson C, Berthon B, Wood L (2022) Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: a systematic review and meta-analysis. Nutr Rev 80(4):838–856. https://doi.org/10.1093/nutrit/nuab059

    Article  PubMed  Google Scholar 

  43. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  45. Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, Hofmann J, Raifer H et al (2019) The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun 10(1):760. https://doi.org/10.1038/s41467-019-08711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  47. Yissachar N, Zhou Y, Ung L, Lai NY, Mohan JF, Ehrlicher A, Weitz DA, Kasper DL et al (2017) An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168(6):1135–1148. https://doi.org/10.1016/j.cell.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jameson KG, Hsiao EY (2018) Linking the gut microbiota to a brain neurotransmitter. Trends Neurosci 41(7):413–414. https://doi.org/10.1016/j.tins.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen R, Xu Y, Wu P, Zhou H, Lasanajak Y, Fang Y, Tang L, Ye L et al (2019) Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 148:104403. https://doi.org/10.1016/j.phrs.2019.104403

    Article  CAS  PubMed  Google Scholar 

  50. Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S (2019) Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation 16(1):165. https://doi.org/10.1186/s12974-019-1552-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Katherine Regan and Dr. Mobin Siddiqui for their editorial assistance.

Funding

This research was supported by the National Natural Science Foundation of China (No. 31870334), the Key Research and Promotion Project of Henan Province (No. 222102310346), the Provincial and Ministerial Key Project of Henan Medical Science and Technology Research Plan (No. SBGJ202102087), and the Key Scientific Research Projects of Colleges and Universities in Henan Province (No. 22A350018).

Author information

Authors and Affiliations

Authors

Contributions

Mengmeng Dou, Yaojuan Chu, Xueliang Zhou, and Lin Zhu participated in the study conceptualization and experimental design. Mengmeng Dou, Yaojuan Chu, Xueliang Zhou, Mengru Wang, Xinyu Li, and Rui Ma performed the experiments. Mengmeng Dou, Yaojuan Chu, Xiaoyu Zhao, Wenbin Wang, and Silu Li analyzed the data. Mengmeng Dou, Yaojuan Chu, and Xueliang Zhou wrote the manuscript. Zhirui Fan and Ying Lv contributed key materials for experiments.

Corresponding author

Correspondence to Lin Zhu.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University (No. 2019-KY-142).

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, M., Chu, Y., Zhou, X. et al. Matrine Mediated Immune Protection in MS by Regulating Gut Microbiota and Production of SCFAs. Mol Neurobiol 61, 74–90 (2024). https://doi.org/10.1007/s12035-023-03568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03568-5

Keywords

Navigation