Skip to main content
Log in

Dysregulation of MicroRNAs Derived from Plasma Extracellular Vesicles in Schizoaffective Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The association between peripheral blood extracellular vesicles (EVs)–derived miRNAs (EVs-miRNAs) and neuropsychiatric diseases has been extensively studied. However, it remains largely unclear about the expression profile of EVs-miRNAs in schizoaffective disorder (SAD) patients. In our study, we isolated the EVs from plasma samples of patients and healthy controls, and then analyzed the expression profiles of EVs-miRNAs through small RNA sequencing. Our results identified 32 differentially expressed (DE) miRNAs (25 upregulated and 7 downregulated) in SAD patients. A module containing 42 miRNAs closely related to SAD was identified by weighted gene co-expression network analysis (WGCNA), among which has-miR-15b-5p, has-miR-301a-3p, has-miR-342-3p, has-miR-219b-5p, and has-miR-145-5p were identified as hub miRNAs. The enrichment analysis showed that the target genes of these 42 miRNAs were significantly enriched in multiple pathways related to neuropathology and located at synapses. A total of 6 DE miRNAs (has-miR-7-5p, has-miR-144-3p, has-miR-155-5p, has-miR-342-3p, has-miR-342-5p, and has-miR-487b-3p) associated with SAD were selected for qRT-PCR verification. The level of has-miR-342-3p in SAD patients was downregulated, and hsa-miR-155-5p was upregulated. Our findings support the hypothesis that dysregulation of EVs-miRNAs in plasma might be involved in the underlying neuropathology of SAD through several biological pathways and provide important preliminary evidence supporting the use of EVs-miRNAs as potential novel biomarkers in SAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Laursen TM, Munk-Olsen T, Nordentoft M, Bo MP (2007) A comparison of selected risk factors for unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia from a danish population-based cohort. J Clin Psychiatry 68(11):1673–1681. https://doi.org/10.4088/jcp.v68n1106

    Article  PubMed  Google Scholar 

  2. Azorin JM, Kaladjian A, Fakra E (2005) Current issues on schizoaffective disorder. Encephale 31(3):359–365. https://doi.org/10.1016/s0013-7006(05)82401-7

    Article  PubMed  Google Scholar 

  3. Malaspina D, Owen MJ, Heckers S, Tandon R, Bustillo J, Schultz S, Barch DM, Gaebel W et al (2013) Schizoaffective disorder in the DSM-5. Schizophr Res 150(1):21–25. https://doi.org/10.1016/j.schres.2013.04.026

    Article  PubMed  Google Scholar 

  4. Pai N, Vella SL (2019) The misdiagnosis of schizoaffective disorder. Aust N Z J Psychiatry 53(11):1124–1125. https://doi.org/10.1177/0004867419872246

    Article  PubMed  Google Scholar 

  5. Das S, Pantoji MV, Mehta UM, Thirthalli J (2018) Sequential type schizoaffective disorder: a concept missed in the classificatory system. Asian J Psychiatr 36:86–87. https://doi.org/10.1016/j.ajp.2018.06.013

    Article  PubMed  Google Scholar 

  6. Peterson DL, Webb CA, Keeley JW, Gaebel W, Zielasek J, Rebello TJ, Robles R, Matsumoto C et al (2019) The reliability and clinical utility of ICD-11 schizoaffective disorder: a field trial. Schizophr Res 208:235–241. https://doi.org/10.1016/j.schres.2019.02.011

    Article  PubMed  Google Scholar 

  7. Lintunen J, Taipale H, Tanskanen A, Mittendorfer-Rutz E, Tiihonen J, Lähteenvuo M (2021) Long-term real-world effectiveness of pharmacotherapies for schizoaffective disorder. Schizophr Bull 47(4):1099–1107. https://doi.org/10.1093/schbul/sbab004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Piletic K, Kunej T (2016) MicroRNA epigenetic signatures in human disease. Arch Toxicol 90(10):2405–2419. https://doi.org/10.1007/s00204-016-1815-7

    Article  CAS  PubMed  Google Scholar 

  9. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  10. Kocerha J, Dwivedi Y, Brennand KJ (2015) Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease. Mol Psychiatry 20(6):677–684. https://doi.org/10.1038/mp.2015.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen L, Dong R, Lu Y, Zhou Y, Li K, Zhang Z, Peng M (2019) MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice. Brain Behav Immun 78:188–201. https://doi.org/10.1016/j.bbi.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  12. van den Berg M, Krauskopf J, Ramaekers JG, Kleinjans J, Prickaerts J, Briede JJ (2020) Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 185:101732. https://doi.org/10.1016/j.pneurobio.2019.101732

    Article  PubMed  Google Scholar 

  13. Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M et al (2023) The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 42(4):493–504. https://doi.org/10.1016/j.clnu.2023.02.007

    Article  PubMed  Google Scholar 

  14. He S, Huang L, Shao C, Nie T, Xia L, Cui B, Lu F, Zhu L et al (2021) Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson’s disease. Transl Neurodegener 10(1):1–2. https://doi.org/10.1186/s40035-021-00249-y

    Article  CAS  Google Scholar 

  15. Du Y, Yu Y, Hu Y, Li X, Wei Z, Pan R, Li X, Zheng G et al (2019) Genome-wide, integrative analysis implicates exosome-derived microRNA dysregulation in schizophrenia. Schizophr Bull 45(6):1257–1266. https://doi.org/10.1093/schbul/sby191

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gamez-Valero A, Campdelacreu J, Vilas D, Ispierto L, Rene R, Alvarez R, Armengol MP, Borras FE et al (2019) Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer's disease and dementia with Lewy bodies. Transl Neurodegener 8:31. https://doi.org/10.1186/s40035-019-0169-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ceylan D, Tufekci KU, Keskinoglu P, Genc S, Özerdem A (2020) Circulating exosomal microRNAs in bipolar disorder. J Affect Disord 262:99–107. https://doi.org/10.1016/j.jad.2019.10.038

    Article  CAS  PubMed  Google Scholar 

  18. Eitan E, Zhang S, Witwer KW, Mattson MP (2015) Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles 4:26373. https://doi.org/10.3402/jev.v4.26373

    Article  PubMed  Google Scholar 

  19. Khan NZ, Cao T, He J, Ritzel RM, Li Y, Henry RJ, Colson C, Stoica BA et al (2021) Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain Behav Immun 92:165–183. https://doi.org/10.1016/j.bbi.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  20. Ge L, Zhang N, Li D, Wu Y, Wang H, Wang J (2020) Circulating exosomal small RNAs are promising non-invasive diagnostic biomarkers for gastric cancer. J Cell Mol Med 24(24):14502–14513. https://doi.org/10.1111/jcmm.16077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bao Y, Wang L, Shi L, Yun F, Liu X, Chen Y, Chen C, Ren Y et al (2019) Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. Cell Mol Biol Lett 24:38. https://doi.org/10.1186/s11658-019-0162-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye J, Zha J, Shi Y, Li Y, Yuan D, Chen Q, Lin F, Fang Z et al (2019) Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Clin Epigenetics 11(1):137. https://doi.org/10.1186/s13148-019-0723-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yi R, Guo Y, Shi C, Liu L (2022) Majorbio Cloud: a one-stop comprehensive bioinformatic platform for multiomics analyses. iMeta 1:e12. https://doi.org/10.1002/imt2.12

    Article  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q (2019) HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res 47(D1):D1013–D1017. https://doi.org/10.1093/nar/gky1010

    Article  CAS  PubMed  Google Scholar 

  26. Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira DAL (2017) Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release 262:247–258. https://doi.org/10.1016/j.jconrel.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  27. Cardno AG, Owen MJ (2014) Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull 40(3):504–515. https://doi.org/10.1093/schbul/sbu016

    Article  PubMed  PubMed Central  Google Scholar 

  28. Glausier JR, Kimoto S, Fish KN, Lewis DA (2015) Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia. Biol Psychiatry 77(2):167–176. https://doi.org/10.1016/j.biopsych.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  29. Fries GR, Lima CNC, Valvassori SS, Zunta-Soares G, Soares JC, Quevedo J (2019) Preliminary investigation of peripheral extracellular vesicles’ microRNAs in bipolar disorder. J Affect Disord 255:10–14. https://doi.org/10.1016/j.jad.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  30. Wlodarczyk J, Mukhina I, Kaczmarek L, Dityatev A (2011) Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol 71(11):1040–1053. https://doi.org/10.1002/dneu.20958

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann JA, Schaffer DV (2019) Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull 150:50–60. https://doi.org/10.1016/j.brainresbull.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  32. He J, Zhang N, Zhu Y, Jin R, Wu F (2021) MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K-Akt signaling pathway. Biomaterials 265:120448. https://doi.org/10.1016/j.biomaterials.2020.120448

    Article  CAS  PubMed  Google Scholar 

  33. Yu S, Gu Y, Wang T, Mu L, Wang H, Yan S, Wang A, Wang J et al (2021) Study of neuronal apoptosis ceRNA network in hippocampal sclerosis of human temporal lobe epilepsy by RNA-Seq. Front Neurosci 15:770627. https://doi.org/10.3389/fnins.2021.770627

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Qi Y, Liu CF, Lu JM, Shi J, Shi Y (2018) MicroRNA expression data analysis to identify key miRNAs associated with Alzheimer's disease. J Gene Med 20(6):e3014. https://doi.org/10.1002/jgm.3014

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S, Liu L, Lv Z, Li Q, Gong W, Wu H (2017) MicroRNA-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells by targeting astrocyte-elevated gene-1 (AEG-1). Oncol Res 25(9):1505–1515. https://doi.org/10.3727/096504017X14886485417426

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee SG, Kim K, Kegelman TP, Dash R, Das SK, Choi JK, Emdad L, Howlett EL et al (2011) Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res 71(20):6514–6523. https://doi.org/10.1158/0008-5472.CAN-11-0782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goetzl EJ, Srihari VH, Guloksuz S, Ferrara M, Tek C, Heninger GR (2021) Neural cell-derived plasma exosome protein abnormalities implicate mitochondrial impairment in first episodes of psychosis. FASEB J 35(2). https://doi.org/10.1096/fj.202002519R

  38. Vazquez-Mera S, Martelo-Vidal L, Miguens-Suarez P, Saavedra-Nieves P, Arias P, Gonzalez-Fernandez C, Mosteiro-Anon M, Corbacho-Abelaira MD et al (2023) Serum exosome inflamma-miRs are surrogate biomarkers for asthma phenotype and severity. Allergy 78(1):141–155. https://doi.org/10.1111/all.15480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of Shenzhen Pingshan District Center for Disease Control and Prevention for their assistance in the collection of blood samples. Thanks to Dr. Miaobing Zheng from Deakin University for linguistic advice.

Funding

This work was supported by the Research Program of Pingshan Health Commission, Shenzhen, China (No.202189, No.202190), Seed funding of Wuhan University-Duke Kunshan University Joint Research Platform (WHUDKUZZJJ202203), China-Australia Research Cooperation and High-level Talents Training Program in Nutrition and Health Research, China Scholarship Council(2022-No.1007), and the Sichuan International Studies University scientific research project (sisu202215).

Author information

Authors and Affiliations

Authors

Contributions

Rui Chen: conceptualization; data curation; formal analysis; methodology; software; validation; writing—original draft. Junxia Shi: conceptualization; data curation; visualization; methodology; software. Hongguang Yang: data curation; visualization; formal analysis. Minzhe Zhang: methodology; project administration. Qiutong Chen and Qiqiang He: conceptualization; methodology; writing—review and editing; funding acquisition.

Corresponding authors

Correspondence to Qiutong Chen or Qiqiang He.

Ethics declarations

Ethical Approval

The study was carried out in accordance with ethical principles for medical research involving humans (WMA, Declaration of Helsinki). The assessment protocol was approved by the Medical Research Ethics Committee of Wuhan University (2021YF0044).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Table S1. Primer sequences used in qRT-PCR

ESM 2

Table S2. 221highly expressed miRNAs

ESM 3

Table S3. KEGG enrichment analysis for the MEyellow module

ESM 4

Figure S1. Gene ontology enrichment analysis for MEyellow module

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Shi, J., Yang, H. et al. Dysregulation of MicroRNAs Derived from Plasma Extracellular Vesicles in Schizoaffective Disorder. Mol Neurobiol 60, 6373–6382 (2023). https://doi.org/10.1007/s12035-023-03482-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03482-w

Keywords

Navigation