Skip to main content
Log in

Vagus Nerve Stimulation Prevents Endothelial Necroptosis to Alleviate Blood-Spinal Cord Barrier Disruption After Spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Vagus nerve stimulation (VNS) is a promising neuromodulation technique, which has been demonstrated to promote functional recovery after spinal cord injury (SCI) in our previous study. But the underlying mechanism remains to be explored. Using a compressed SCI model, our present study first demonstrated that activated microglia produce abundant tumor necrosis factor-α (TNF-α) to induce endothelial necroptosis via receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed lineage kinase domain-like protein (MLKL) pathway, thus destroying the blood-spinal cord barrier (BSCB) after SCI. While both TNF-α specifical antibody (infliximab) and necroptosis inhibitor (necrostatin-1) alleviate BSCB disruption. Then our study found that VNS significantly inhibits microglia-derived TNF-α production and reduces expression of p-RIP3 and p-MLKL in endothelial cells. As expected, further results indicated that VNS mitigates the BSCB disruption, thus reducing inflammatory cells infiltration and neural damage. Finally, both electrophysiological evaluation and locomotor test demonstrated that VNS promotes motor function recovery after SCI. In conclusion, our data demonstrated VNS restricts microglia-derived TNF-α to prevent RIP1/RIP3/MLKL mediated endothelial necroptosis, thus alleviating the decisive pathophysiological BSCB disruption to reduce neuroinflammation and neural damage, which ultimately promotes motor function recovery after SCI. Therefore, these results further elaborate that VNS might be a promising therapeutic strategy for SCI.

Graphical Abstract

Vagus nerve stimulation prevents microglia-derived TNF-α induced endothelial necroptosis to alleviate blood-spinal cord barrier disruption after spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data that support the fndings of this study are available from the corresponding author upon reasonable request.

References

  1. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 (2019). Lancet Neurol 18(1):56–87. https://doi.org/10.1016/s1474-4422(18)30415-0

  2. Courtine G, Sofroniew MV (2019) Spinal cord repair: advances in biology and technology. Nat Med 25(6):898–908. https://doi.org/10.1038/s41591-019-0475-6

    Article  CAS  PubMed  Google Scholar 

  3. Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, Alexander J, Ali R et al (2021) Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet (London, England) 397(10284):1545–1553. https://doi.org/10.1016/s0140-6736(21)00475-x

    Article  PubMed  Google Scholar 

  4. Bowles S, Hickman J, Peng X, Williamson WR, Huang R, Washington K, Donegan D, Welle CG (2022) Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron 110(17):2867-2885.e2867. https://doi.org/10.1016/j.neuron.2022.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen H, Feng Z, Min L, Deng W, Tan M, Hong J, Gong Q, Zhang D et al (2022) Vagus Nerve Stimulation Reduces Neuroinflammation Through Microglia Polarization Regulation to Improve Functional Recovery After Spinal Cord Injury. Front Neurosci 16:813472. https://doi.org/10.3389/fnins.2022.813472

    Article  PubMed  PubMed Central  Google Scholar 

  6. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. https://doi.org/10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  7. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1):19–33. https://doi.org/10.1038/s41583-018-0093-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee CS, Hwang G, Nam YW, Hwang CH, Song J (2023) IKK-mediated TRAF6 and RIPK1 interaction stifles cell death complex assembly leading to the suppression of TNF-α-induced cell death. Cell Death Differ. https://doi.org/10.1038/s41418-023-01161-w

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ et al (2019) Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang WY, Lai YL, Liu KH, Lin S, Chen HY, Liang CH, Wu HM, Hsu KS (2022) TNFα-mediated necroptosis in brain endothelial cells as a potential mechanism of increased seizure susceptibility in mice following systemic inflammation. J Neuroinflammation 19(1):29. https://doi.org/10.1186/s12974-022-02406-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 99(1):21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  12. Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY (2021) Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 38(9):1203–1224. https://doi.org/10.1089/neu.2020.7413

    Article  PubMed  Google Scholar 

  13. Zhang S, Zhao J, Wu M, Zhou Y, Wu X, Du A, Tao Y, Huang S et al (2023) Over-activation of TRPM2 ion channel accelerates blood-spinal cord barrier destruction in diabetes combined with spinal cord injury rat. Int J Biol Sci 19(8):2475–2494. https://doi.org/10.7150/ijbs.80672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar H, Ropper AE, Lee SH, Han I (2017) Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Mol Neurobiol 54(5):3578–3590. https://doi.org/10.1007/s12035-016-9910-6

    Article  CAS  PubMed  Google Scholar 

  15. Feng Z, Min L, Liang L, Chen B, Chen H, Zhou Y, Deng W, Liu H et al (2021) Neutrophil Extracellular Traps Exacerbate Secondary Injury via Promoting Neuroinflammation and Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Front Immunol 12:6982409. https://doi.org/10.3389/fimmu.2021.698249

    Article  CAS  Google Scholar 

  16. Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, Park CK, Kim HM et al (2020) Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury. J Neurosci: Off J Soc Neurosci 40(9):1943–1955. https://doi.org/10.1523/jneurosci.2035-19.2020

    Article  CAS  Google Scholar 

  17. Xie C, Wang Y, Wang J, Xu Y, Liu H, Guo J, Zhu L (2023) Perlecan Improves Blood Spinal Cord Barrier Repair Through the Integrin β1/ROCK/MLC Pathway After Spinal Cord Injury. Mol Neurobiol 60(1):51–67. https://doi.org/10.1007/s12035-022-03041-9

    Article  CAS  PubMed  Google Scholar 

  18. Weaver LC, Verghese P, Bruce JC, Fehlings MG, Krenz NR, Marsh DR (2001) Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord. J Neurotrauma 18(10):1107–1119. https://doi.org/10.1089/08977150152693782

    Article  CAS  PubMed  Google Scholar 

  19. Chengke L, Weiwei L, Xiyang W, Ping W, Xiaoyang P, Zhengquan X, Hao Z, Penghui Z et al (2013) Effect of infliximab combined with methylprednisolone on expressions of NF-κB, TRADD, and FADD in rat acute spinal cord injury. Spine 38(14):E861-869. https://doi.org/10.1097/BRS.0b013e318294892c

    Article  PubMed  Google Scholar 

  20. Wang S, Wu J, Zeng YZ, Wu SS, Deng GR, Chen ZD, Lin B (2017) Necrostatin-1 Mitigates Endoplasmic Reticulum Stress After Spinal Cord Injury. Neurochem Res 42(12):3548–3558. https://doi.org/10.1007/s11064-017-2402-x

    Article  CAS  PubMed  Google Scholar 

  21. Feng Z, Min L, Chen H, Deng W, Tan M, Liu H, Hou J (2021) Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol 43:101984. https://doi.org/10.1016/j.redox.2021.101984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21. https://doi.org/10.1089/neu.1995.12.1

    Article  CAS  PubMed  Google Scholar 

  23. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 70(2):194–206. https://doi.org/10.1002/ana.22421

    Article  PubMed  Google Scholar 

  24. Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z et al (2022) Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 17(1):194–202. https://doi.org/10.4103/1673-5374.314323

    Article  CAS  PubMed  Google Scholar 

  25. Benton RL, Maddie MA, Worth CA, Mahoney ET, Hagg T, Whittemore SR (2008) Transcriptomic screening of microvascular endothelial cells implicates novel molecular regulators of vascular dysfunction after spinal cord injury. J Cerebral Blood Flow Metab: Off J Int Soc Cerebral Blood Flow Metab 28(11):1771–1785. https://doi.org/10.1038/jcbfm.2008.76

    Article  CAS  Google Scholar 

  26. Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A (2021) Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 127:37–53. https://doi.org/10.1016/j.neubiorev.2021.04.018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants 82172542 (H.L.L.) and U19A2082 (J.M.H.) from the National Natural Science Foundation of China, CQYC20210510203 (J.M.H.) from the Chongqing Talents Project, and cst2021jcyj-msxmX0612 (J.M.H.) from the Natural Science Foundation of Chongqing.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: JMH; animal model establishment: LXM, MLT; experiment implementation: HC, ZF, DYZ; manuscript draft: HC, ZF, QWG; critical revision: JMH, HLL. All authors approved the submitted version.

Corresponding author

Correspondence to Jingming Hou.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Third Military Medical University (Army Medical University) for the use of laboratory animals (approval no. AMUWEC20210377).

Informed Consent

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hui Chen and Zhou Feng have contributed equally to this work and share first authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Feng, Z., Min, L. et al. Vagus Nerve Stimulation Prevents Endothelial Necroptosis to Alleviate Blood-Spinal Cord Barrier Disruption After Spinal Cord Injury. Mol Neurobiol 60, 6466–6475 (2023). https://doi.org/10.1007/s12035-023-03477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03477-7

Keywords

Navigation