Skip to main content

Advertisement

Log in

Ferroptosis-Related Immune Genes in Hematological Diagnosis of Parkinson’s Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Emerging evidence suggested that ferroptosis and immune activation, as well as their interactions, played a crucial role in the occurrence and progression of Parkinson’s disease (PD). However, whether this interaction could serve as the basis for a hematological diagnosis of PD remained poorly understood. This study aimed to construct a novel hematological model for PD diagnosis based on the ferroptosis-related immune genes. The brain imaging of PD patients was obtained from the Affiliated Hospital of Nantong University. We used least absolute shrinkage and selection operator (LASSO) to identify the optimal signature ferroptosis-related immune genes based on six gene expression profile datasets of substantia nigra (SN) and peripheral blood of PD patients. Then we used the support vector machine (SVM) classifier to construct the hematological diagnostic model named Ferr.Sig for PD. Gene set enrichment analysis was utilized to execute gene functional annotation. The brain imaging and functional annotation analysis revealed prominent iron deposition and immune activation in the SN region of PD patients. We identified a total of 17 signature ferroptosis-related immune genes using LASSO method and imported them to SVM classifier. The Ferr.Sig model exhibited a high diagnostic accuracy, and its area under the curve (AUC) for distinguishing PD patients from healthy controls in the training and internal validation cohort reached 0.856 and 0.704, respectively. We also used the Ferr.Sig into other external validation cohorts, and a comparable AUC with the internal cohort was obtained, with the AUC of 0.727 in Scherzer’s cohort, 0.745 in Roncagli’s cohort, and 0.778 in Meiklejohn’s cohort. Furthermore, the diagnostic performance of Ferr.Sig was not interfered by the other neurodegenerative diseases. This study revealed the value of ferroptosis-related immune genes in PD diagnosis, which may provide a novel direction and strategy for the development of novel biomarkers with less invasiveness, low cost, and high accuracy for PD screening and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data involved in this study were available from the GEO database (GEO; https://www.ncbi.nlm.nih.gov/geo/). A total of six gene expression profile datasets of SN tissue from PD patients and healthy controls were used in this study including GSE7621, GSE20141, GSE20163, GSE20164, GSE20295, and GSE49036, and four gene expression profile datasets of blood were used including GSE6613, GSE72267, GSE80599, and GSE99039. Further data were available from the corresponding author upon request.

Abbreviations

α-syn :

α-synuclein

AUC :

area under the curve

CI :

confidence intervals

GO :

Gene Ontology

GPX4 :

glutathione peroxidase 4

GSEA :

gene set enrichment analysis

LASSO :

least absolute shrinkage and selection operator

NDD :

neurodegenerative disease

PD :

Parkinson’s disease

PPI :

protein–protein interaction

ROC :

receiver operating characteristic

ROS :

reactive oxygen species

SN :

substantia nigra

SVM :

support vector machine

SWI :

susceptibility-weighted imaging

References

  1. Bloem BR, Okun MS, Klein C (2021) Parkinson's disease. Lancet 397(10291):2284–2303

    Article  CAS  PubMed  Google Scholar 

  2. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jankovic J, Tan EK (2020) Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 91(8):795–808

    Article  PubMed  Google Scholar 

  4. Kalia LV, Lang AE (2015) Parkinson's disease. Lancet 386(9996):896–912

    Article  CAS  PubMed  Google Scholar 

  5. Schneider SA, Obeso JA (2015) Clinical and pathological features of Parkinson's disease. Curr Top Behav Neurosci 22:205–220

    Article  CAS  PubMed  Google Scholar 

  6. Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, Castaño-Díez D, Schweighauser G, Graff-Meyer A, Goldie KN et al (2019) Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci 22(7):1099–1109

    Article  CAS  PubMed  Google Scholar 

  7. Rocha EM, De Miranda B, Sanders LH (2018) Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis 109(Pt B):249–257

    Article  CAS  PubMed  Google Scholar 

  8. Kam TI, Hinkle JT, Dawson TM, Dawson VL (2020) Microglia and astrocyte dysfunction in Parkinson's disease. Neurobiol Dis 144:105028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moreau C, Duce JA, Rascol O, Devedjian JC, Berg D, Dexter D, Cabantchik ZI, Bush AI, Devos D (2018) Iron as a therapeutic target for Parkinson's disease. Mov Disord 33(4):568–574

    Article  PubMed  Google Scholar 

  10. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G (2020) Neurodegeneration and inflammation-an interesting interplay in Parkinson's disease. Int J Mol Sci 21(22)

  12. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10–20

    Article  CAS  PubMed  Google Scholar 

  13. Lanskey JH, McColgan P, Schrag AE, Acosta-Cabronero J, Rees G, Morris HR, Weil RS (2018) Can neuroimaging predict dementia in Parkinson's disease? Brain 141(9):2545–2560

    PubMed  PubMed Central  Google Scholar 

  14. Wang WY, Tan MS, Yu JT, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med 3(10):136

    PubMed  PubMed Central  Google Scholar 

  15. Biondetti E, Santin MD, Valabrègue R, Mangone G, Gaurav R, Pyatigorskaya N, Hutchison M, Yahia-Cherif L, Villain N, Habert MO et al (2021) The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease. Brain 144(10):3114–3125

    Article  PubMed  PubMed Central  Google Scholar 

  16. Depierreux F, Parmentier E, Mackels L, Baquero K, Degueldre C, Balteau E, Salmon E, Phillips C, Bahri MA, Maquet P et al (2021) Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI. NPJ Parkinsons Dis 7(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Do Van B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, Bastide M, Laloux C, Moreau C, Bordet R et al (2016) Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  PubMed  Google Scholar 

  18. Ito K, Eguchi Y, Imagawa Y, Akai S, Mochizuki H, Tsujimoto Y (2017) MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells. Cell Death Discov 3:17013

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bai L, Yan F, Deng R, Gu R, Zhang X, Bai J (2021) Thioredoxin-1 rescues MPP(+)/MPTP-induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol 58(7):3187–3197

    Article  CAS  PubMed  Google Scholar 

  20. Song LM, Xiao ZX, Zhang N, Yu XQ, Cui W, Xie JX, Xu HM (2021) Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis. iScience 24(5):102431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C, Kuang W, Chen D et al (2020) FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson's disease. Neurotherapeutics 17(4):1796–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun Y, He L, Wang T, Hua W, Qin H, Wang J, Wang L, Gu W, Li T, Li N et al (2020) Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells. Mol Neurobiol 57(11):4628–4641

    Article  CAS  PubMed  Google Scholar 

  23. Wang ZL, Yuan L, Li W, Li JY (2022) Ferroptosis in Parkinson's disease: glia-neuron crosstalk. Trends Mol Med 28(4):258–269

    Article  CAS  PubMed  Google Scholar 

  24. Lee J, Hyun DH (2023) The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel) 12(4)

  25. Healy S, McMahon J, Owens P, FitzGerald U (2016) Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model. Sci Rep 6:36410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, Gonzalez-Billault C, Nunez MT (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126(4):541–549

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Song N, Jiang H, Wang J, Xie J (2013) Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta 1832(5):618–625

    Article  CAS  PubMed  Google Scholar 

  28. Zhang HY, Song N, Jiang H, Bi MX, Xie JX (2014) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons. Biochim Biophys Acta 1843(12):2967–2975

    Article  CAS  PubMed  Google Scholar 

  29. Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG (2021) Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol 38:101789

    Article  PubMed  Google Scholar 

  30. Zhu Y, Wang B, Tao K, Yang H, Wang Y, Zhou T, Yang Y, Yuan L, Liu X, Duan Y (2017) Iron accumulation and microglia activation contribute to substantia nigra hyperechogenicity in the 6-OHDA-induced rat model of Parkinson's disease. Parkinsonism Relat Disord 36:76–82

    Article  PubMed  Google Scholar 

  31. Kang JJ, Chen Y, Xu GD, Bao SL, Wang J, Ge M, Shen LH, Jia ZZ (2022) Combining quantitative susceptibility mapping to radiomics in diagnosing Parkinson's disease and assessing cognitive impairment. Eur Radiol 32(10):6992–7003

    Article  PubMed  Google Scholar 

  32. Dijkstra AA, Ingrassia A, de Menezes RX, van Kesteren RE, Rozemuller AJ, Heutink P, van de Berg WD (2015) Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia nigra in early stage Parkinson's disease. PLoS One 10(6):e0128651

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3(6):e98

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137B(1):5–16

    Article  PubMed  Google Scholar 

  35. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA et al (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2(52):52ra73

    Article  PubMed  PubMed Central  Google Scholar 

  36. Calligaris R, Banica M, Roncaglia P, Robotti E, Finaurini S, Vlachouli C, Antonutti L, Iorio F, Carissimo A, Cattaruzza T et al (2015) Blood transcriptomics of drug-naive sporadic Parkinson's disease patients. BMC Genomics 16:876

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pinho R, Guedes LC, Soreq L, Lobo PP, Mestre T, Coelho M, Rosa MM, Goncalves N, Wales P, Mendes T et al (2016) Gene expression differences in peripheral blood of Parkinson's disease patients with distinct progression profiles. PLoS One 11(6):e0157852

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, Ney PA, Ng J, McGoldrick M, Mollenhauer B et al (2008) GATA transcription factors directly regulate the Parkinson's disease-linked gene alpha-synuclein. Proc Natl Acad Sci U S A 105(31):10907–10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shamir R, Klein C, Amar D, Vollstedt EJ, Bonin M, Usenovic M, Wong YC, Maver A, Poths S, Safer H et al (2017) Analysis of blood-based gene expression in idiopathic Parkinson disease. Neurology 89(16):1676–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315

    Article  CAS  PubMed  Google Scholar 

  41. Buus TB, Odum N, Geisler C, Lauritsen JPH (2017) Three distinct developmental pathways for adaptive and two IFN-gamma-producing gammadelta T subsets in adult thymus. Nat Commun 8(1):1911

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhou N, Bao J (2020) FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford) 2020

  43. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262

    Article  CAS  PubMed  Google Scholar 

  46. Engebretsen S, Bohlin J (2019) Statistical predictions with glmnet. Clin. Epigenetics 11(1):123

    Article  Google Scholar 

  47. Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081

    Article  CAS  PubMed  Google Scholar 

  48. Galea I (2021) The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 18(11):2489–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garcia-Ruiz PJ, Chaudhuri KR, Martinez-Martin P (2014) Non-motor symptoms of Parkinson's disease a review...from the past. J Neurol Sci 338(1-2):30–33

    Article  PubMed  Google Scholar 

  51. Rana AQ, Ahmed US, Chaudry ZM, Vasan S (2015) Parkinson's disease: a review of non-motor symptoms. Expert Rev Neurother 15(5):549–562

    Article  CAS  PubMed  Google Scholar 

  52. Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, Patel MC, Spino M, Connelly J, Tricta F et al (2017) Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease. Sci Rep 7(1):1398

    Article  PubMed  PubMed Central  Google Scholar 

  53. Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garcon G, Rouaix N et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid Redox Signal 21(2):195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zuo Y, Xie J, Li X, Li Y, Thirupathi A, Zhang J, Yu P, Gao G, Chang Y, Shi Z (2021) Ferritinophagy-mediated ferroptosis involved in paraquat-induced neurotoxicity of dopaminergic neurons: implication for neurotoxicity in PD. Oxid Med Cell Longev 2021:9961628

    Article  PubMed  PubMed Central  Google Scholar 

  55. Friedrich I, Reimann K, Jankuhn S, Kirilina E, Stieler J, Sonntag M, Meijer J, Weiskopf N, Reinert T, Arendt T et al (2021) Cell specific quantitative iron mapping on brain slices by immuno-microPIXE in healthy elderly and Parkinson's disease. Acta Neuropathol Commun 9(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, Ijsselsteijn ME, de Miranda N, Lelieveldt BPF, Dijkstra J, van Roon-Mom WMC, Hollt T et al (2021) Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients. Acta Neuropathol Commun 9(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32(11):1884–1890

    Article  CAS  PubMed  Google Scholar 

  58. Schonhoff AM, Williams GP, Wallen ZD, Standaert DG, Harms AS (2020) Innate and adaptive immune responses in Parkinson's disease. Prog Brain Res 252:169–216

    Article  PubMed  Google Scholar 

  59. Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J (2020) Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 16(6):303–318

    Article  PubMed  Google Scholar 

  60. Liu JQ, Chu SF, Zhou X, Zhang DY, Chen NH (2019) Role of chemokines in Parkinson's disease. Brain Res Bull 152:11–18

    Article  CAS  PubMed  Google Scholar 

  61. Farmen K, Nissen SK, Stokholm MG, Iranzo A, Ostergaard K, Serradell M, Otto M, Svendsen KB, Garrido A, Vilas D et al (2021) Monocyte markers correlate with immune and neuronal brain changes in REM sleep behavior disorder. Proc Natl Acad Sci U S A 118(10)

Download references

Acknowledgements

We were very grateful to everyone member for advice and help in this study.

Author information

Authors and Affiliations

Authors

Contributions

HYL, BZ, YLZ, and ZZJ designed this work. HYL, BZ, TTY, YH CYC, and MG conducted data acquisition. HYL and BZ performed the data integration and analysis. HYL, BZ, and ZZJ wrote this manuscript. HYL, BZ, TTY, and DDS were responsible for the manuscript revision. All authors approved this manuscript.

Corresponding authors

Correspondence to You Lang Zhou or Zhongzheng Jia.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Ethics Committee of the Affiliated Hospital of Nantong University. All subjects have signed informed consent.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Figure S1. The principal component analysis for the combined six gene expression profiles of PD. (A) Before batch correction. (B) After batch correction using ComBat algorithm. (PDF 1414 kb)

ESM 2

Figure S2. Logistic regression for 27 differentially expressed ferroptosis related genes in SN tissues of PD patients. Odds Ratio < 1 represented the protective factor for PD, while Odds Ratio > 1 represented the risk factor for PD. (PDF 163 kb)

ESM 3

Figure S3. The GO enrichment analysis for the differentially expressed genes between peripheral blood of healthy subjects and PD patients. (PDF 169 kb)

ESM 4

Figure S4. Logistic regression for 17 identified signature ferroptosis-related immune genes in SN tissues of PD patients. Odds Ratio < 1 represented the protective factor for PD, while Odds Ratio > 1 represented the risk factor for PD. (PDF 148 kb)

ESM 5

Figure S5. The performance of each signature ferroptosis-related immune gene in PD diagnosis measured by the area under the ROC curve (AUC) in the training cohort. (PDF 879 kb)

ESM 6

(XLSX 360 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Zhang, B., Yin, T. et al. Ferroptosis-Related Immune Genes in Hematological Diagnosis of Parkinson’s Diseases. Mol Neurobiol 60, 6395–6409 (2023). https://doi.org/10.1007/s12035-023-03468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03468-8

Keywords

Navigation