Skip to main content
Log in

Association of Ferroptosis with Severity and Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: A Case-control Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ferroptosis, an iron-dependent form of cell death, is characterized by intracellular accumulation of iron and reactive oxygen species-induced lipid peroxidation. Animal experiments have shown the important roles of ferroptosis in ischemic stroke, but the evidence in human stroke is insufficient. This prospective study evaluated the associations between plasma ferroptosis biomarkers at hyperacute stage and long-term outcomes in patients with acute ischemic stroke undergoing endovascular thrombectomy (EVT). The plasma samples were collected immediately before and after EVT (T1 and T2) and at 24 h (T3) for the 126 stroke patients and once for the 50 stroke-free control subjects. Compared with controls, stroke patients had higher 4-hydroxynonenal (4-HNE) levels at T1 and T2 while lower homocysteine and soluble transferrin receptor (sTfR) levels at T3. In stroke patients, higher National Institutes of Health Stroke Scale scores at admission were correlated with higher 4-HNE and lower sTfR levels. Lower Alberta Stroke Program Early CT (ASPECT) scores and larger infarct core volumes on CT perfusion before EVT were correlated with higher 4-HNE and homocysteine levels. After adjusting for significant parameters, homocysteine levels at T2 were significantly associated with poor functional outcome and mortality at 3 months. In the receiver operating characteristic (ROC) models, adding homocysteine levels at T2 and hemoglobin levels to the reference model for predicting poor functional outcome significantly increased the area under the ROC curve. In summary, this study provides evidence that ferroptosis is associated with stroke severity and outcomes in patients with acute ischemic stroke undergoing EVT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Molina CA (2010) Futile recanalization in mechanical embolectomy trials: a call to improve selection of patients for revascularization. Stroke 41:842–843

    Article  PubMed  Google Scholar 

  2. Pan H, Lin C, Chen L, Qiao Y, Huang P, Liu B et al (2021) Multiple-factor analyses of futile recanalization in acute ischemic stroke patients treated with mechanical thrombectomy. Front Neurol 12:704088

    Article  PubMed  PubMed Central  Google Scholar 

  3. Diestro JDB, Dmytriw AA, Broocks G, Chen K, Hirsch JA, Kemmling A et al (2020) Endovascular thrombectomy for low ASPECTS large vessel occlusion ischemic stroke: a systematic review and meta-analysis. Can J Neurol Sci 47:612–619

    Article  PubMed  Google Scholar 

  4. van Kranendonk KR, Treurniet KM, Boers AMM, Berkhemer OA, van den Berg LA, Chalos V et al (2019) Clinical and imaging markers associated with hemorrhagic transformation in patients with acute ischemic stroke. Stroke 50:2037–2043

    Article  PubMed  Google Scholar 

  5. Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J et al (2021) Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol 12:661955

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N et al (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Fang Y, Zhang Z, Luo Y, Zhang A, Lenahan C et al (2022) Ferroptosis: an emerging therapeutic target in stroke. J Neurochem 160:64–73

    Article  CAS  PubMed  Google Scholar 

  8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Fan H, Wang S, Tang G, Zhai C, Shen L (2021) Ferroptosis: a novel therapeutic target for ischemia-reperfusion injury. Front Cell Dev Biol 9:688605

    Article  PubMed  PubMed Central  Google Scholar 

  10. DeGregorio-Rocasolano N, Martí-Sistac O, Ponce J, Castelló-Ruiz M, Millán M, Guirao V et al (2018) Iron-loaded transferrin (tf) is detrimental whereas iron-free tf confers protection against brain ischemia by modifying blood tf saturation and subsequent neuronal damage. Redox Biol 15:143–158

    Article  CAS  PubMed  Google Scholar 

  11. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22:1520–1530

    Article  CAS  PubMed  Google Scholar 

  12. Demougeot C, Van Hoecke M, Bertrand N, Prigent-Tessier A, Mossiat C, Beley A et al (2004) Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2’-dipyridyl in the rat photothrombotic ischemic stroke model. J Pharmacol Exp Ther 311:1080–1087

    Article  CAS  PubMed  Google Scholar 

  13. Camaschella C (2017) New insights into iron deficiency and iron deficiency anemia. Blood Rev 31:225–233

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X et al (2020) Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med 160:552–565

    Article  CAS  PubMed  Google Scholar 

  15. Zhao M, Wang X, He M, Qin X, Tang G, Huo Y et al (2017) Homocysteine and stroke risk: modifying effect of methylenetetrahydrofolate reductase C677T polymorphism and folic acid intervention. Stroke 48:1183–1190

    Article  CAS  PubMed  Google Scholar 

  16. Shi Z, Guan Y, Huo YR, Liu S, Zhang M, Lu H et al (2015) Elevated total homocysteine levels in acute ischemic stroke are associated with long-term mortality. Stroke 46:2419–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dalleau S, Baradat M, Guéraud F, Huc L (2013) Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20:1615–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo JM, Liu AJ, Zang P, Dong WZ, Ying L, Wang W et al (2013) ALDH2 protects against stroke by clearing 4-HNE. Cell Res 23:915–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG, Biller J et al (1989) Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20:864–870

    Article  CAS  PubMed  Google Scholar 

  20. Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme early CT score. Lancet 355:1670–1674

    Article  CAS  PubMed  Google Scholar 

  21. Adams HPJr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41

    Article  PubMed  Google Scholar 

  22. Dargazanli C, Fahed R, Blanc R, Gory B, Labreuche J, Duhamel A et al (2018) Modified thrombolysis in cerebral infarction 2 C/thrombolysis in cerebral infarction 3 reperfusion should be the aim of mechanical thrombectomy: insights from the ASTER trial (contact aspiration Versus Stent Retriever for successful revascularization). Stroke 49:1189–1196

    Article  PubMed  Google Scholar 

  23. Von Kummer R, Broderick JP, Campbell BC, Demchuk A, Goyal M, Hill MD et al (2015) The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion therapy. Stroke 46:2981–2986

    Article  Google Scholar 

  24. Wu S, Yuan R, Wang Y, Wei C, Zhang S, Yang X et al (2018) Early prediction of malignant brain edema after ischemic stroke. Stroke 49:2918–2927

    Article  PubMed  Google Scholar 

  25. Le Bouc R, Clarençon F, Meseguer E, Lapergue B, Consoli A, Turc G et al (2018) Efficacy of endovascular therapy in acute ischemic stroke depends on age and clinical severity. Stroke 49:1686–1694

    Article  PubMed  Google Scholar 

  26. Lee WC, Wong HY, Chai YY, Shi CW, Amino N, Kikuchi S et al (2012) Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun 425:842–847

    Article  CAS  PubMed  Google Scholar 

  27. Karlhuber GM, Bauer HC, Eckl PM (1997) Cytotoxic and genotoxic effects of 4-hydroxynonenal in cerebral endothelial cells. Mutat Res 381:209–216

    Article  CAS  PubMed  Google Scholar 

  28. Chapple SJ, Cheng X, Mann GE (2013) Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 1:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lehotský J, Tothová B, Kovalská M, Dobrota D, Beňová A, Kalenská D et al (2016) Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front Neurosci 10:538

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guttormsen AB, Mansoor AM, Fiskerstrand T, Ueland PM, Refsum H (1993) Kinetics of plasma homocysteine in healthy subjects after peroral homocysteine loading. Clin Chem 39:1390–1397

    Article  CAS  PubMed  Google Scholar 

  31. Zhang T, Jiang Y, Zhang S, Tie T, Cheng Y, Su X et al (2020) The association between homocysteine and ischemic stroke subtypes in chinese: a meta-analysis. Med (Baltim) 99:e19467

    Article  CAS  Google Scholar 

  32. Rabelo NN, Telles JPM, Pipek LZ, Farias Vidigal Nascimento R, Gusmão RC, Teixeira MJ et al (2022) Homocysteine is associated with higher risks of ischemic stroke: a systematic review and meta-analysis. PLoS ONE 17:e0276087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN (2017) The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond) 14:78

    Article  PubMed  Google Scholar 

  34. Song H, Zhang JF, Tang R, Zuo SH, Su XH (2020) Effect of intravascular intervention therapy on fibrinogen, homocysteine and prognosis of acute ischemic stroke. J Hebei Medical University 4:298

    Google Scholar 

  35. Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N et al (2017) Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 14:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu Q, Liu J, Wang Y, Cheng Y, Liu M (2023) Higher serum homocysteine levels are associated with an increased risk of hemorrhagic transformation in patients with acute ischemic stroke. BMC Neurol 23:103

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhong C, Xu T, Xu T, Peng Y, Wang A, Wang J et al (2017) Plasma homocysteine and prognosis of acute ischemic stroke: a gender-specific analysis from CATIS randomized clinical trial. Mol Neurobiol 54:2022–2030

    Article  CAS  PubMed  Google Scholar 

  38. Yao ES, Tang Y, Xie MJ, Wang MH, Wang H, Luo X (2016) Elevated homocysteine level related to poor outcome after thrombolysis in acute ischemic stroke. Med Sci Monit 22:3268–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DeGregorio-Rocasolano N, Martí-Sistac O, Gasull T (2019) Deciphering the iron side of stroke: neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front Neurosci 13:85

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shalev H, Kapelushnik J, Moser A, Knobler H, Tamary H (2007) Hypocholesterolemia in chronic anemias with increased erythropoietic activity. Am J Hematol 82:199–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful for the support of Yu-Chiao Chi and the 3rd Core Facility of the National Taiwan University Hospital.

Funding

This work was supported by National Taiwan University Hospital (Grant numbers [111-S0222]).

Author information

Authors and Affiliations

Authors

Contributions

SJY and SCT analyzed and interpreted the patient data. YHL and CWL performed EVT procedures and collected the blood samples of patients. SJY was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chung-Wei Lee or Sung-Chun Tang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Research Ethics Committee of the National Taiwan University Hospital (Reference number: 201807029RINA).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

This manuscript did not contain any individual person’s data.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, SJ., Chen, CH., Lin, YH. et al. Association of Ferroptosis with Severity and Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: A Case-control Study. Mol Neurobiol 60, 5902–5914 (2023). https://doi.org/10.1007/s12035-023-03448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03448-y

Keywords

Navigation