Skip to main content

Advertisement

Log in

Cerebrospinal Fluid Pressure Reduction Induces Glia-Mediated Retinal Inflammation and Leads to Retinal Ganglion Cell Injury in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Low intracranial pressure (LICP)–induced translaminar cribrosa pressure difference (TLCPD) elevation has been proven as a risk factor in glaucomatous neurodegeneration, whereas the underlying retinal immune features of LICP-induced retinal ganglion cells (RGC) injury remain elusive. Here, we identified the retinal immune characteristics of LICP rats, and minocycline (Mino) treatment was utilized to analyze its inhibitory role in glia-mediated retinal inflammation of LICP rats. The results showed that retrograde axonal transport was decreased in LICP rats without significant RGC loss, indicating the RGC injury was at an early stage before the morphological loss. The activation of retinal microglia and astrocytes with morphologic and M1 or A1-marker alternations was detected in TLCPD elevation rats, the activation level is more dramatic in HIOP rats than in the LICP rats (P<0.05). Besides, we detected reduced retinal tight junction protein expressions, accompanied by specific imbalance patterns of T lymphocytes in the retina of both LICP and HIOP rats (P<0.05). Further Mino treatment showed an effective inhibitory role in glia-driven inflammatory responses in LICP rats, including improving retrograde axonal transport, inhibiting retinal glial activation and proinflammatory subtype polarization, and alleviating the blood-retina barrier compromise. This study identified the glia-mediated retinal inflammation features triggered by LICP stimulus, and Mino application exhibited an effective role in the inhibition of retinal glia-mediated inflammation in LICP-induced TLCPD elevation rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the confidentiality of original data but are available from the corresponding author on reasonable request.

References

  1. Liu KC, Fleischman D, Lee AG, Killer HE, Chen JJ, Bhatti MT (2020) Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease. Surv Ophthalmol 65(1):48–66. https://doi.org/10.1016/j.survophthal.2019.08.005

    Article  PubMed  Google Scholar 

  2. Ficarrotta KR, Passaglia CL (2020) Intracranial pressure modulates aqueous humour dynamics of the eye. J Physiol 598(2):403–413. https://doi.org/10.1113/jp278768

    Article  CAS  PubMed  Google Scholar 

  3. Jonas JB, Wang NL, Wang YX, You QS, Xie XB, Yang DY, Xu L (2015) Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol 93(1):e7–e13. https://doi.org/10.1111/aos.12480

    Article  PubMed  Google Scholar 

  4. Price DA, Harris A, Siesky B, Mathew S (2020) The influence of translaminar pressure gradient and intracranial pressure in glaucoma: a review. J Glaucoma 29(2):141–146. https://doi.org/10.1097/ijg.0000000000001421

    Article  PubMed  Google Scholar 

  5. Li J, Yang D, Kwong JMK, Fu J, Hou R, Jonas JB, Wang H, Zhang Z, Chen W, Li Z, Sang J, Xie X, Ren R, Weinreb RN, Wang N (2020) Long-term follow-up of optic neuropathy in chronic low cerebrospinal fluid pressure monkeys: the Beijing Intracranial and Intraocular Pressure (iCOP) Study. Sci China Life Sci 63(11):1762–1765. https://doi.org/10.1007/s11427-018-1626-6

    Article  PubMed  Google Scholar 

  6. Goncalves A, Antonetti DA (2022) Transgenic animal models to explore and modulate the blood brain and blood retinal barriers of the CNS. Fluids Barriers CNS 19(1):86. https://doi.org/10.1186/s12987-022-00386-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I (2021) Glaucoma and neuroinflammation: an overview. Surv Ophthalmol 66(5):693–713. https://doi.org/10.1016/j.survophthal.2021.02.003

    Article  PubMed  Google Scholar 

  8. Cheng Y, Wu S, Yan X, Liu Q, Lin D, Zhang J, Wang N (2022) Human Pro370Leu mutant myocilin induces the phenotype of open-angle glaucoma in transgenic mice. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-022-01280-x

  9. Jiang S, Kametani M, Chen DF (2020) Adaptive immunity: new aspects of pathogenesis underlying neurodegeneration in glaucoma and optic neuropathy. Front Immunol 11:65. https://doi.org/10.3389/fimmu.2020.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mao Y, Yang D, Li J, Liu J, Hou R, Zhang Z, Yang Y, Tian L, Weinreb RN, Wang N (2020) Finite element analysis of trans-lamina cribrosa pressure difference on optic nerve head biomechanics: the Beijing Intracranial and Intraocular Pressure Study. Sci China Life Sci 63(12):1887–1894. https://doi.org/10.1007/s11427-018-1585-8

    Article  PubMed  Google Scholar 

  11. Zhao X, Sun R, Luo X, Wang F, Sun X (2021) The interaction between microglia and macroglia in glaucoma. Front Neurosci 15:610788. https://doi.org/10.3389/fnins.2021.610788

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oikawa K, Ver Hoeve JN, Teixeira LBC, Snyder KC, Kiland JA, Ellinwood NM, McLellan GJ (2020) Sub-region-specific optic nerve head glial activation in glaucoma. Mol Neurobiol 57(6):2620–2638. https://doi.org/10.1007/s12035-020-01910-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tezel G (2022) Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 87:100998. https://doi.org/10.1016/j.preteyeres.2021.100998

    Article  CAS  PubMed  Google Scholar 

  14. Wei X, Cho KS, Thee EF, Jager MJ, Chen DF (2019) Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res 97(1):70–76. https://doi.org/10.1002/jnr.24256

    Article  CAS  PubMed  Google Scholar 

  15. Li XX, Zhang Z, Zeng HY, Wu S, Liu L, Zhang JX, Liu Q, Yang DY, Wang NL (2018) Selective early glial reactivity in the visual pathway precedes axonal loss, following short-term cerebrospinal fluid pressure reduction. Invest Ophthalmol Vis Sci 59(8):3394–3404. https://doi.org/10.1167/iovs.17-22232

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Wei X (2021) T cell-mediated autoimmunity in glaucoma neurodegeneration. Front Immunol 12:803485. https://doi.org/10.3389/fimmu.2021.803485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rolle T, Ponzetto A, Malinverni L (2020) The role of neuroinflammation in glaucoma: an update on molecular mechanisms and new therapeutic options. Front Neurol 11:612422. https://doi.org/10.3389/fneur.2020.612422

    Article  PubMed  Google Scholar 

  18. Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, Mathew R, McHam ML et al (2018) Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 9(1):3209. https://doi.org/10.1038/s41467-018-05681-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo C, Wu N, Niu X, Wu Y, Chen D, Guo W (2018) Comparison of T helper cell patterns in primary open-angle glaucoma and normal-pressure glaucoma. Med Sci Monit 24:1988–1996. https://doi.org/10.12659/msm.904923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou C, Sun R, Sun C, Gu M, Guo C, Zhang J, Du Y, Gu H, Liu Q (2020) Minocycline protects neurons against glial cells-mediated bilirubin neurotoxicity. Brain Res Bull 154:102–105. https://doi.org/10.1016/j.brainresbull.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Ye Z, Pei S, Zheng D, Zhu L (2021) Neuroprotective effect of minocycline on rat retinal ischemia-reperfusion injury. Mol Vis 27:438–456

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Levkovitch-Verbin H, Waserzoog Y, Vander S, Makarovsky D, Piven I (2014) Minocycline upregulates pro-survival genes and downregulates pro-apoptotic genes in experimental glaucoma. Graefes Arch Clin Exp Ophthalmol 252(5):761–772. https://doi.org/10.1007/s00417-014-2588-4

    Article  CAS  PubMed  Google Scholar 

  23. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–1565. https://doi.org/10.2337/diabetes.54.5.1559

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Wang C, He W, Cai Z (2021) Ameliorating Alzheimer's-like pathology by Minocycline via inhibiting Cdk5/p25 signaling. Curr Neuropharmacol. https://doi.org/10.2174/1570159x19666211202124925

  25. Zhang Z, Wu S, Jonas JB, Zhang J, Liu K, Lu Q, Wang N (2016) Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Acta Ophthalmol 94(3):266–275. https://doi.org/10.1111/aos.12768

    Article  CAS  PubMed  Google Scholar 

  26. Fang F, Zhang J, Zhuang P, Liu P, Li L, Huang H, Webber HC, Xu Y, Liu L, Dalal R, Sun Y, Hu Y (2021) Chronic mild and acute severe glaucomatous neurodegeneration derived from silicone oil-induced ocular hypertension. Sci Rep 11(1):9052. https://doi.org/10.1038/s41598-021-88690-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grotegut P, Perumal N, Kuehn S, Smit A, Dick HB, Grus FH, Joachim SC (2020) Minocycline reduces inflammatory response and cell death in a S100B retina degeneration model. J Neuroinflammation 17(1):375. https://doi.org/10.1186/s12974-020-02012-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kato K, Sugawara A, Nagashima R, Ikesugi K, Sugimoto M, Kondo M (2020) Factors affecting photopic negative response recorded with RETeval system: study of young healthy subjects. Transl Vis Sci Technol 9 (9):19. https://doi.org/10.1167/tvst.9.9.19

  29. Maddineni P, Kasetti RB, Patel PD, Millar JC, Kiehlbauch C, Clark AF, Zode GS (2020) CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma. Mol Neurodegener 15(1):48. https://doi.org/10.1186/s13024-020-00400-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Liu D, Jonas JB, Wu S, Kwong JM, Zhang J, Liu Q, Li L, Lu Q, Yang D, Wang J, Wang N (2015) Axonal transport in the rat optic nerve following short-term reduction in cerebrospinal fluid pressure or elevation in intraocular pressure. Invest Ophthalmol Vis Sci 56(8):4257–4266. https://doi.org/10.1167/iovs.14-16045

    Article  PubMed  Google Scholar 

  31. Binley KE, Ng WS, Tribble JR, Song B, Morgan JE (2014) Sholl analysis: a quantitative comparison of semi-automated methods. J Neurosci Methods 225:65–70. https://doi.org/10.1016/j.jneumeth.2014.01.017

    Article  PubMed  Google Scholar 

  32. Young K, Morrison H (2018) Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J Vis Exp JOVE 136. https://doi.org/10.3791/57648

  33. Berdahl JP, Allingham RR (2010) Intracranial pressure and glaucoma. Curr Opin Ophthalmol 21(2):106–111. https://doi.org/10.1097/ICU.0b013e32833651d8

    Article  PubMed  Google Scholar 

  34. Liang Q, Wang L, Liu X (2020) Mechanism study of trans-lamina cribrosa pressure difference correlated to optic neuropathy in individuals with glaucoma. Sci China Life Sci 63(1):148–151. https://doi.org/10.1007/s11427-018-9553-7

    Article  PubMed  Google Scholar 

  35. Jonas JB, Wang N, Yang D (2016) Translamina cribrosa pressure difference as potential element in the pathogenesis of glaucomatous optic neuropathy. Asia Pac J Ophthalmol 5(1):5–10. https://doi.org/10.1097/apo.0000000000000170

    Article  Google Scholar 

  36. Zhang Z, Wu S, Liu K, Zhang J, Liu Q, Li L, Wang N (2020) Time-dependent effects of reduced cerebrospinal fluid pressure on optic nerve retrograde axonal transport. Invest Ophthalmol Vis Sci 61(5):6. https://doi.org/10.1167/iovs.61.5.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu X, Zhao GL, Xu MX, Zhou H, Li F, Miao Y, Lei B, Yang XL, Wang Z (2021) Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. J Neuroinflammation 18(1):303. https://doi.org/10.1186/s12974-021-02366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, Ambati BK, Vetter ML (2015) Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 8(5):443–455. https://doi.org/10.1242/dmm.018788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bordone MP, González Fleitas MF, Pasquini LA, Bosco A, Sande PH, Rosenstein RE, Dorfman D (2017) Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem 142(2):323–337. https://doi.org/10.1111/jnc.14070

    Article  CAS  PubMed  Google Scholar 

  40. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li T, Liu T, Chen X, Li L, Feng M, Zhang Y, Wan L, Zhang C, Yao W (2020) Microglia induce the transformation of A1/A2 reactive astrocytes via the CXCR7/PI3K/Akt pathway in chronic post-surgical pain. J Neuroinflammation 17(1):211. https://doi.org/10.1186/s12974-020-01891-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng J, Lu J, Mei S, Wu H, Sun Z, Fang Y, Xu S, Wang X, Shi L, Xu W, Chen S, Yu J, Liang F, Zhang J (2021) Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. J Neuroinflammation 18(1):43. https://doi.org/10.1186/s12974-021-02101-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kisucká A, Bimbová K, Bačová M, Gálik J, Lukáčová N (2021) Activation of neuroprotective microglia and astrocytes at the lesion site and in the adjacent segments is crucial for spontaneous locomotor recovery after spinal cord injury. Cells 10(8). https://doi.org/10.3390/cells10081943

  44. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49(4):1437–1446. https://doi.org/10.1167/iovs.07-1337

    Article  PubMed  Google Scholar 

  45. Sofroniew MV (2020) Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol 41(9):758–770. https://doi.org/10.1016/j.it.2020.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Translational neurodegeneration 9(1):42. https://doi.org/10.1186/s40035-020-00221-2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43(3):144–154. https://doi.org/10.1016/j.tins.2020.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Song X, Li M, Wang X, Tao Y, Xiya X, Liu H, Zhao Y, Chang D, Sha Q (2020) The role of TLR4/NF-κB signaling pathway in activated microglia of rats with chronic high intraocular pressure and vitro scratch injury-induced microglia. Int Immunopharmacol 83:106395. https://doi.org/10.1016/j.intimp.2020.106395

    Article  CAS  PubMed  Google Scholar 

  49. Yang X, Zeng Q, Barış M, Tezel G (2020) Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma. J Neuroinflammation 17(1):252. https://doi.org/10.1186/s12974-020-01930-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen R, Xie F, Zhao J, Yue B (2020) Suppressed nuclear factor-kappa B alleviates lipopolysaccharide-induced acute lung injury through downregulation of CXCR4 mediated by microRNA-194. Respir Res 21(1):144. https://doi.org/10.1186/s12931-020-01391-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu G, Zhang Z, Xing Y, Wei J, Ge Z, Liu X, Zhang Y, Huang X (2014) MicroRNA-149 negatively regulates TLR-triggered inflammatory response in macrophages by targeting MyD88. J Cell Biochem 115(5):919–927. https://doi.org/10.1002/jcb.24734

    Article  CAS  PubMed  Google Scholar 

  52. Ntoufa S, Vilia MG, Stamatopoulos K, Ghia P, Muzio M (2016) Toll-like receptors signaling: a complex network for NF-κB activation in B-cell lymphoid malignancies. Semin Cancer Biol 39:15–25. https://doi.org/10.1016/j.semcancer.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  53. Cataisson C, Salcedo R, Hakim S, Moffitt BA, Wright L, Yi M, Stephens R, Dai RM, Lyakh L, Schenten D, Yuspa HS, Trinchieri G (2012) IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. J Exp Med 209(9):1689–1702. https://doi.org/10.1084/jem.20101355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walter FR, Harazin A, Tóth AE, Veszelka S, Santa-Maria AR, Barna L, Kincses A, Biczó G, Balla Z, Kui B, Maléth J, Cervenak L, Tubak V, Kittel Á, Rakonczay Z Jr, Deli MA (2022) Blood-brain barrier dysfunction in L-ornithine induced acute pancreatitis in rats and the direct effect of L-ornithine on cultured brain endothelial cells. Fluids Barriers CNS 19(1):16. https://doi.org/10.1186/s12987-022-00308-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee EJ, Han JC, Kee C (2017) A novel hypothesis for the pathogenesis of glaucomatous disc hemorrhage. Prog Retin Eye Res 60:20–43. https://doi.org/10.1016/j.preteyeres.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  56. Mangan BG, Al-Yahya K, Chen CT, Gionfriddo JR, Powell CC, Dubielzig RR, Ehrhart EJ, Madl JE (2007) Retinal pigment epithelial damage, breakdown of the blood-retinal barrier, and retinal inflammation in dogs with primary glaucoma. Vet Ophthalmol 10(Suppl 1):117–124. https://doi.org/10.1111/j.1463-5224.2007.00585.x

    Article  PubMed  Google Scholar 

  57. Trost A, Motloch K, Bruckner D, Schroedl F, Bogner B, Kaser-Eichberger A, Runge C, Strohmaier C, Klein B, Aigner L, Reitsamer HA (2015) Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Exp Eye Res 136:59–71. https://doi.org/10.1016/j.exer.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  58. Brockhaus K, Melkonyan H, Prokosch-Willing V, Liu H, Thanos S (2020) Alterations in tight- and adherens-junction proteins related to glaucoma mimicked in the organotypically cultivated mouse retina under elevated pressure. Invest Ophthalmol Vis Sci 61(3):46. https://doi.org/10.1167/iovs.61.3.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang X, Zeng Q, Göktas E, Gopal K, Al-Aswad L, Blumberg DM, Cioffi GA, Liebmann JM, Tezel G (2019) T-lymphocyte subset distribution and activity in patients with glaucoma. Invest Ophthalmol Vis Sci 60(4):877–888. https://doi.org/10.1167/iovs.18-26129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bell K, Holz A, Ludwig K, Pfeiffer N, Grus FH (2017) Elevated regulatory T cell levels in glaucoma patients in comparison to healthy controls. Curr Eye Res 42(4):562–567. https://doi.org/10.1080/02713683.2016.1205629

    Article  CAS  PubMed  Google Scholar 

  61. Khanh Vu TH, Chen H, Pan L, Cho KS, Doesburg D, Thee EF, Wu N, Arlotti E, Jager MJ, Chen DF (2020) CD4(+) T-cell responses mediate progressive neurodegeneration in experimental ischemic retinopathy. Am J Pathol 190(8):1723–1734. https://doi.org/10.1016/j.ajpath.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28(5):348–368. https://doi.org/10.1016/j.preteyeres.2009.06.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The contributions from every author in this study are greatly appreciated.

Funding

This work was supported by National Natural Science Foundation of China (81730027, 82130029), Beijing Postdoctoral Research Foundation (2021), and Beijing Natural Science Foundation (L212036).

Author information

Authors and Affiliations

Authors

Contributions

Ying Cheng designed and conducted the experiments and data analysis, and wrote the paper. Danting Lin and Shen Wu conducted the experiments. Qian Liu and Xuejing Yan helped design the experiments. Tianmin Ren helped analyze the data. Jingxue Zhang and Ningli Wang revised the paper and provided the materials. All authors contributed to the manuscript revision, read, and approved the submitted version.

Corresponding authors

Correspondence to Jingxue Zhang or Ningli Wang.

Ethics declarations

Ethics Approval

The animal study was approved by Institutional Animal Care and Use Committee of the Capital Medical University (AEEI-2021-128).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Lin, D., Wu, S. et al. Cerebrospinal Fluid Pressure Reduction Induces Glia-Mediated Retinal Inflammation and Leads to Retinal Ganglion Cell Injury in Rats. Mol Neurobiol 60, 5770–5788 (2023). https://doi.org/10.1007/s12035-023-03430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03430-8

Keywords

Navigation