Skip to main content

Advertisement

Log in

Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glaucoma, a multifactorial neurodegenerative disease characterized by progressive loss of retinal ganglion cells and their axons in the optic nerve, is a leading cause of irreversible vision loss. Intraocular pressure (IOP) is a risk factor for axonal damage, which initially occurs at the optic nerve head (ONH). Complex cellular and molecular mechanisms involved in the pathogenesis of glaucomatous optic neuropathy remain unclear. Here we define early molecular events in the ONH in an inherited large animal glaucoma model in which ONH structure resembles that of humans. Gene expression profiling of ONH tissues from rigorously phenotyped feline subjects with early-stage glaucoma and precisely age-matched controls was performed by RNA-sequencing (RNA-seq) analysis and complementary bioinformatic approaches applied to identify molecular processes and pathways of interest. Immunolabeling supported RNA-seq findings while providing cell-, region-, and disease stage–specific context in the ONH in situ. Transcriptomic evidence for cell proliferation and immune/inflammatory responses is identifiable in early glaucoma, soon after IOP elevation and prior to morphologically detectable axon loss, in this large animal model. In particular, proliferation of microglia and oligodendrocyte precursor cells is a prominent feature of early-stage, but not chronic, glaucoma. ONH microgliosis is a consistent hallmark in both early and chronic stages of glaucoma. Molecular pathways and cell type–specific responses strongly implicate toll-like receptor and NF-κB signaling in early glaucoma pathophysiology. The current study provides critical insights into molecular pathways, highly dependent on cell type and sub-region in the ONH even prior to irreversible axon degeneration in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available the NCBI’s Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo; accession number: GSE110019).

References

  1. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  2. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713 discussion 829–30

    Article  PubMed  Google Scholar 

  3. Anderson DR, Drance SM, Schulzer M (1998) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 126(4):498–505

    Article  Google Scholar 

  4. Drance S, Anderson DR, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 2001;131(6):699–708.

  5. Anderson DR, Drance SM, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group (2001) Natural history of normal-tension glaucoma. Ophthalmology 108(2):247–253

    Article  CAS  PubMed  Google Scholar 

  6. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279

    Article  PubMed  Google Scholar 

  7. Susanna R Jr, De Moraes CG, Cioffi GA, Ritch R (2015) Why do people (still) go blind from Glaucoma? Transl Vis Sci Technol 4(2):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boland MV, Ervin A-M, Friedman DS, Jampel HD, Hawkins BS, Vollenweider D, Chelladurai Y, Ward D et al (2013) Comparative effectiveness of treatments for open-angle glaucoma: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 158(4):271–279

    Article  PubMed  Google Scholar 

  9. Quigley HA, Anderson DR (1977) Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci 16(7):640–644

    CAS  PubMed  Google Scholar 

  10. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK et al (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hernandez MR, Miao H, Lukas T (2008) Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 173:353–373

  12. Nickells RW, Howell GR, Soto I, John SWM (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35(1):153–179

    Article  CAS  PubMed  Google Scholar 

  13. Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24(1):39–73

    Article  PubMed  Google Scholar 

  14. Williams PA, Marsh-Armstrong N, Howell GR, Bosco A, Danias J, Simon J et al (2017) Neuroinflammation in glaucoma: a new opportunity. Exp Eye Res 157:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harder JM, Braine CE, Williams PA, Zhu X, MacNicoll KH, Sousa GL et al (2017) Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A 114(19):E3839–E3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuehn MH, Lipsett KA, Menotti-Raymond M, Whitmore SS, Scheetz TE, David VA, et al. (2016) A mutation in LTBP2 causes congenital glaucoma in domestic cats (Felis catus). Chidlow G, editor. PLoS ONE.11(5):e0154412.

  17. Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA, Hejtmancik JF, Khan SN et al (2009) Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet 84(5):664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adelman S, Shinsako D, Kiland JA, Yaccarino V, Ellinwood NM, Ben-Shlomo G et al (2018) The post-natal development of intraocular pressure in normal domestic cats (Felis catus) and in feline congenital glaucoma. Exp Eye Res 166:70–73

    Article  CAS  PubMed  Google Scholar 

  19. Rutz-Mendicino MM, Snella EM, Jens JK, Gandolfi B, Carlson SA, Kuehn MH, McLellan G, Ellinwood NM (2011) Removal of potentially confounding phenotypes from a Siamese-derived feline glaucoma breeding colony. Comparative Medicine 61(3):251–257

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sigle KJ, Camaño-Garcia G, Carriquiry AL, Betts DM, Kuehn MH, McLellan GJ (2011) The effect of dorzolamide 2% on circadian intraocular pressure in cats with primary congenital glaucoma. Vet Ophthalmol 14(Suppl. 1):48–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Del Sole MJ, Sande PH, Bernades JM, Aba MA, Rosenstein RE (2007) Circadian rhythm of intraocular pressure in cats. Vet Ophthalmol 10(3):155–161

    Article  PubMed  Google Scholar 

  22. Teixeira LBC, Buhr KA, Bowie O, Duke FD, Nork TM, Dubielzig RR, McLellan G (2014) Quantifying optic nerve axons in a cat glaucoma model by a semi-automated targeted counting method. Mol Vis 20:376–385

    PubMed  PubMed Central  Google Scholar 

  23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M et al (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29(1):15–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shannon P (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010;) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. Ravasi T, editor. PLoS One 5(11):e13984–e13912.

  30. Ye H, Hernandez MR (1995) Heterogeneity of astrocytes in human optic nerve head. J Comp Neurol 362(4):441–452

    Article  CAS  PubMed  Google Scholar 

  31. Neufeld AH (1999) Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 117(8):1050–1056

    Article  CAS  PubMed  Google Scholar 

  32. Jennings AR, Carroll WM (2014) Oligodendrocyte lineage cells in chronic demyelination of multiple sclerosis optic nerve. Brain Pathol 25(5):517–530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Balaratnasingam C, Kang MH, Yu P, Chan G, Morgan WH, Cringle SJ, Yu DY (2014) Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions. Exp Eye Res 121:11–22

    Article  CAS  PubMed  Google Scholar 

  34. Stowell C, Burgoyne CF, Tamm ER, Ethier CR, Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants (2017) Biomechanical aspects of axonal damage in glaucoma: a brief review. Exp Eye Res 157:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Balaratnasingam C, Morgan WH, Johnstone V, Pandav SS, Cringle SJ, Yu D-Y (2009) Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human. Exp Eye Res 89(5):618–628

    Article  CAS  PubMed  Google Scholar 

  36. Kang MH, Law-Davis S, Balaratnasingam C, Yu D-Y (2014) Sectoral variations in the distribution of axonal cytoskeleton proteins in the human optic nerve head. Exp Eye Res 128:141–150

    Article  CAS  PubMed  Google Scholar 

  37. Ossola B, Zhao C, Compston A, Pluchino S, Franklin RJM, Spillantini MG (2016) Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation. Glia 64(3):457–471

    Article  PubMed  Google Scholar 

  38. Fischer AJ, Zelinka C, Scott MA (2010) Heterogeneity of glia in the retina and optic nerve of birds and mammals. Koch K-W, editor. PLoS ONE. 5(6):e10774.

  39. Tiwari S, Dharmarajan S, Shivanna M, Otteson DC, Belecky-Adams TL (2014) Histone deacetylase expression patterns in developing murine optic nerve. BMC Dev Biol 14(1):30–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Thundyil J, Lim K-L (2015) DAMPs and neurodegeneration. Ageing Res Rev 24(Part A):17–28

    Article  CAS  PubMed  Google Scholar 

  41. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL et al (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 121(4):1429–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson EC, Doser TA, Cepurna WO, Dyck JA, Jia L, Guo Y, Lambert WS, Morrison JC (2011) Cell proliferation and interleukin-6-type cytokine signaling are implicated by gene expression responses in early optic nerve head injury in rat glaucoma. Invest Ophthalmol Vis Sci 52(1):504–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kompass KS, Agapova OA, Li W, Kaufman PL, Rasmussen CA, Hernandez MR (2008) Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension. BMC Neurosci 9(1):93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. John SW, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962

    CAS  PubMed  Google Scholar 

  45. Lozano DC, Choe TE, Cepurna WO, Morrison JC, Johnson EC (2019) Early optic nerve head glial proliferation and Jak-stat pathway activation in chronic experimental glaucoma. Invest Ophthalmol Vis Sci 60(4):921–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tauheed AM, Ayo JO, Kawu MU (2016) Regulation of oligodendrocyte differentiation: insights and approaches for the management of neurodegenerative disease. Pathophysiology 23(3):203–210

    Article  CAS  PubMed  Google Scholar 

  47. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM et al (2010) Cell type-specific gene expression differences in complex tissues. Nat Methods 7(4):287–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun D, Qu J, Jakobs TC (2013) Reversible reactivity by optic nerve astrocytes. Glia. 61(8):1218–1235

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tehrani S, Davis L, Cepurna WO, Choe TE, Lozano DC, Monfared A et al (2016) Astrocyte structural and molecular response to elevated intraocular pressure occurs rapidly and precedes axonal tubulin rearrangement within the optic nerve head in a rat model. Cho K-S, editor. PLoS One 11(11):e0167364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Varela HJ, Hernandez MR (1997) Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 6(5):303–313

    Article  CAS  PubMed  Google Scholar 

  53. Hernandez MR, Igoe F, Neufeld AH (1986) Extracellular matrix of the human optic nerve head. Am J Ophthalmol 102(2):139–148

    Article  CAS  PubMed  Google Scholar 

  54. Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15(6):394–409

    Article  CAS  PubMed  Google Scholar 

  55. Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell. 166(1):181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW (2017) Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 355(6326):756–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qu J, Jakobs TC (2013) The time course of gene expression during reactive gliosis in the optic nerve. Di Giovanni S, editor. PLoS One 8(6):e67094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Evangelidou M, Karamita M, Vamvakas SS, Szymkowski DE, Probert L (2014) Altered expression of oligodendrocyte and neuronal marker genes predicts the clinical onset of autoimmune encephalomyelitis and indicates the effectiveness of multiple sclerosis-directed therapeutics. J Immunol 192(9):4122–4133

    Article  CAS  PubMed  Google Scholar 

  59. Bosco A, Steele MR, Vetter ML (2011) Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 519(4):599–620

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yuan L, Neufeld AH (2001) Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 64(5):523–532

    Article  CAS  PubMed  Google Scholar 

  61. Ebneter A, Casson RJ, Wood JPM, Chidlow G (2010) Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 51(12):6448–6413

    Article  PubMed  Google Scholar 

  62. Block ML, Hong J-S (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98

    Article  CAS  PubMed  Google Scholar 

  63. Bosco A, Breen KT, Anderson SR, Steele MR, Calkins DJ, Vetter ML (2016) Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma. Exp Eye Res 150:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 18:1–25

    Google Scholar 

  65. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B et al (2013) Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Butovsky O, Weiner HL (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19(10):622–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL et al (2012) Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 122(4):1246–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Williams PA, Braine CE, Foxworth NE, Cochran KE, John SWM (2017) GlyCAM1 negatively regulates monocyte entry into the optic nerve head and contributes to radiation-based protection in glaucoma. J Neuroinflammation 14(1):93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Son JL, Soto I, Oglesby E, Lopez-Roca T, Pease ME, Quigley HA, Marsh-Armstrong N (2010) Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia. 58(7):780–789

    PubMed  Google Scholar 

  70. Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H et al (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26(49):12633–12641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A (2014) Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 17(11):1518–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC (2007) Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 48(7):3161–3177

    Article  PubMed  Google Scholar 

  73. Wang DY, Ray A, Rodgers K, Ergorul C, Hyman BT, Huang W, Grosskreutz CL (2010) Global gene expression changes in rat retinal ganglion cells in experimental glaucoma. Invest Ophthalmol Vis Sci 51(8):4084–4012

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  75. Rosenberger K, Derkow K, Dembny P, Krüger C, Schott E, Lehnardt S (2014) The impact of single and pairwise Toll-like receptor activation on neuroinflammation and neurodegeneration. J Neuroinflammation 11(1):373–320

    Article  CAS  Google Scholar 

  76. Luo C, Yang X, Kain AD, Powell DW, Kuehn MH, Tezel G (2010) Glaucomatous tissue stress and the regulation of immune response through glial Toll-like receptor signaling. Invest Ophthalmol Vis Sci 51(11):5697–5611

    Article  Google Scholar 

  77. Takano Y, Shi D, Shimizu A, Funayama T, Mashima Y, Yasuda N et al (2012) Association of Toll-like receptor 4 gene polymorphisms in Japanese subjects with primary open-angle, normal-tension, and exfoliation glaucoma. Am J Ophthalmol 154(5):825–832.e1

    Article  CAS  PubMed  Google Scholar 

  78. Pena JDO, Varela HJ, Ricard CS, Hernandez MR (1999) Enhanced tenascin expression associated with reactive astrocytes in human optic nerve heads with primary open angle glaucoma. Exp Eye Res 68(1):29–40

    Article  CAS  PubMed  Google Scholar 

  79. Bonneh Barkay D, Wiley CA (2009) Brain extracellular matrix in neurodegeneration. Brain Pathol 19(4):573–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Akihiro Ikeda, Robert Nickells, Dale Bjorling, and Colin Dewey for their advice on the conduct of these studies; Satoshi Kinoshita for preparation of cryosections; Ben August for preparation of semi-thin optic nerve sections; Carol A. Rasmussen and Elizabeth A. Hennes-Beean for technical support and acquisition of OCT images and electrophysiology data, respectively; Youngwoo Park and Jaesang Ahn for assistance with tissue dissection, OCT analysis, and axon counting; UW-Madison’s Biotechnology Center for library preparation, sequencing, and the support of bioinformatics analyses; and the student trainees and laboratory assistants in the McLellan lab who assisted with animal procedures and collation of data.

Funding

The studies were supported in part by NIH Grants K08 EY018609 and R01 EY027396 (GJM); S10 OD018221, P30 EY0016665, and a CTSA award from UW-Madison’s Institute for Clinical and Translational Research through NCATS grant UL1TR000427 (GJM); a National Glaucoma Research Grant from the BrightFocus Foundation (GJM); a Grant-in-Aid Award from Fight For Sight (GJM); the University of Wisconsin–Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation (GJM); and an unrestricted grant to the University of Wisconsin-Madison Department of Ophthalmology and Visual Sciences from Research to Prevent Blindness. Additional support was provided by the Center for Integrated Animal Genomics, Iowa State University (NME and GJM); a Battelle General Platform and Infrastructure Award (NME); and a JASSO scholarship (awarded to KO). Tissue sectioning was performed by the University of Wisconsin Translational Research Initiatives in Pathology laboratory (TRIP), supported by the UW Department of Pathology and Laboratory Medicine, UWCCC (P30 CA014520) and the Office of The Director- NIH (S10OD023526).

Author information

Authors and Affiliations

Authors

Contributions

KO and GJM conceived and designed the experiments and overall project; NME provided LTBP2 mutant animals and other resources; GJM acquired optical coherence tomography images. GJM and JAK coordinated, supervised and/or conducted clinical testing. Project specific, custom analysis tools for electrophysiology data were developed and provided by JNV who supervised analyses by KO and KCS. LBCT developed tools for and performed optic nerve axon counts. KO conducted all other experiments. GJM and KO reviewed all data and conducted statistical analyses. All bioinformatic analyses of RNA-seq data were conducted by KO with support from UW-Madison’s Bioinformatics Resource Center. KO and GJM wrote the manuscript with contributions from all co-authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gillian J. McLellan.

Ethics declarations

All animal procedures were conducted in accordance with the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research, the NIH Guide for the Care and Use of Laboratory Animals, and in compliance with protocols approved by the University of Wisconsin-Madison’s IACUC.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(PDF 3220 kb)

ESM2

(XLSX 28 kb)

ESM3

(XLSX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oikawa, K., Ver Hoeve, J.N., Teixeira, L.B.C. et al. Sub-region-Specific Optic Nerve Head Glial Activation in Glaucoma. Mol Neurobiol 57, 2620–2638 (2020). https://doi.org/10.1007/s12035-020-01910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01910-9

Keywords

Navigation