Skip to main content

Advertisement

Log in

Th17/IL-17 Axis in HTLV-1-Associated Myelopathy Tropical Spastic Paraparesis and Multiple Sclerosis: Novel Insights into the Immunity During HAMTSP

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human T lymphotropic virus–associated myelopathy/tropical spastic paraparesis (HTLV/TSP), also known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and multiple sclerosis (MS) are chronic debilitating diseases of the central nervous system; although the etiology of which is different, similarities have been observed between these two demyelinating diseases, especially in clinical manifestation and immunopathogenesis. Exorbitant response of the immune system to the virus and neurons in CNS is the causative agent of HAM/TSP and MS, respectively. Helper T lymphocyte-17 cells (Th17s), a component of the immune system, which have a proven role in immunity and autoimmunity, mediate protection against bacterial/fungal infections. The role of these cells has been reviewed in several CNS diseases. A pivotal role for Th17s is presented in demyelination, even more axial than Th1s, during MS. The effect of Th17s is not well determined in HTLV-1-associated infections; however, the evidence that we have supplied in this review illustrates the attendance, also the role of Th17 cells during HAM/TSP. Furthermore, for better conception concerning the trace of these cells in HAM/TSP, a comparative characterization with MS, the resembling disease, has been applied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ernzen KJ, Panfil AR (2022) Regulation of HTLV-1 transformation. Biosci Rep 42(3)

  2. Nozuma S, Jacobson S (2019) Neuroimmunology of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Front Microbiol 10:885

    Article  PubMed  PubMed Central  Google Scholar 

  3. Azodi S, Nair G, Enose-Akahata Y, Charlip E, Vellucci A, Cortese I et al (2017) Imaging spinal cord atrophy in progressive myelopathies: HTLV-I-associated neurological disease (HAM/TSP) and multiple sclerosis (MS). Ann Neurol 82(5):719–728

    Article  CAS  PubMed  Google Scholar 

  4. Oger J (2007) HTLV-1 infection and the viral etiology of multiple sclerosis. J Neurol Sci 262(1-2):100–104

    Article  CAS  PubMed  Google Scholar 

  5. Bangham CR, Araujo A, Yamano Y, Taylor GP (2015) HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers 1:15012

    Article  PubMed  Google Scholar 

  6. Bangham CRM (2018) Human T cell leukemia virus type 1: persistence and pathogenesis. Annu Rev Immunol 36:43–71

    Article  CAS  PubMed  Google Scholar 

  7. Futsch N, Prates G, Mahieux R, Casseb J, Dutartre H (2018) Cytokine networks dysregulation during HTLV-1 infection and associated diseases. Viruses 10(12)

  8. Sospedra M, Martin R (2016) Immunology of multiple sclerosis. Semin Neurol 36(2):115–127

    Article  PubMed  Google Scholar 

  9. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  10. Bedoya SK, Lam B, Lau K, Larkin J 3rd. (2013) Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013:986789

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yasuda K, Takeuchi Y, Hirota K (2019) The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol 41(3):283–297

    Article  PubMed  Google Scholar 

  12. Nakagawa M, Izumo S, Ijichi S, Kubota H, Arimura K, Kawabata M et al (1995) HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings. J Neurovirol 1(1):50–61

    Article  CAS  PubMed  Google Scholar 

  13. Hofstetter H, Gold R, Hartung HP (2009) Th17 cells in MS and experimental autoimmune encephalomyelitis. Int MS J 16(1):12–18

    PubMed  Google Scholar 

  14. Waisman A, Hauptmann J, Regen T (2015) The role of IL-17 in CNS diseases. Acta Neuropathol 129(5):625–637

    Article  CAS  PubMed  Google Scholar 

  15. Beurel E, Lowell JA (2018) Th17 cells in depression. Brain Behav Immun 69:28–34

    Article  CAS  PubMed  Google Scholar 

  16. Maciak K, Pietrasik S, Dziedzic A, Redlicka J, Saluk-Bijak J, Bijak M et al (2021) Th17-related cytokines as potential discriminatory markers between neuromyelitis optica (Devic’s disease) and multiple sclerosis-a review. Int J Mol Sci 22(16)

  17. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    Article  CAS  PubMed  Google Scholar 

  19. Chang YC, Hee SW, Chuang LM (2021) T helper 17 cells: a new actor on the stage of type 2 diabetes and aging? J Diabetes Investig 12(6):909–913

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD et al (2012) Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61(12):1693–1700

    Article  CAS  PubMed  Google Scholar 

  21. Majumder S, McGeachy MJ (2021) IL-17 in the pathogenesis of disease: good intentions gone awry. Annu Rev Immunol 39:537–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stadhouders R, Lubberts E, Hendriks RW (2018) A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun 87:1–15

    Article  CAS  PubMed  Google Scholar 

  23. Harbour SN, Maynard CL, Zindl CL, Schoeb TR, Weaver CT (2015) Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci USA 112(22):7061–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Tian J, Wang S (2018) Insight into non-pathogenic Th17 cells in autoimmune diseases. Front Immunol 9:1112

    Article  PubMed  PubMed Central  Google Scholar 

  25. Peters A, Lee Y, Kuchroo VK (2011) The many faces of Th17 cells. Curr Opin Immunol. 23(6):702–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volchenkov R, Nygaard V, Sener Z, Skalhegg BS (2017) Th17 Polarization under hypoxia results in increased IL-10 production in a pathogen-independent manner. Front Immunol 8:698

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134(3):392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S (2018) The role of transforming growth factor beta in T helper 17 differentiation. Immunology 155(1):24–35

  29. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  30. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835

    Article  CAS  PubMed  Google Scholar 

  31. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8(9):967–974

    Article  CAS  PubMed  Google Scholar 

  32. Wu B, Wan Y (2020) Molecular control of pathogenic Th17 cells in autoimmune diseases. Int Immunopharmacol 80:106187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ et al (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33(2):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T et al (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8(12):1390–1397

    Article  CAS  PubMed  Google Scholar 

  36. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A et al (2012) Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 13(10):991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee PW, Yang Y, Racke MK, Lovett-Racke AE (2015) Analysis of TGF-beta1 and TGF-beta3 as regulators of encephalitogenic Th17 cells: implications for multiple sclerosis. Brain Behav Immun 46:44–49

    Article  CAS  PubMed  Google Scholar 

  38. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467(7318):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li YF, Zhang SX, Ma XW, Xue YL, Gao C, Li XY (2017) Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: a meta-analysis. Mult Scler Relat Disord 18:20–25

    Article  PubMed  Google Scholar 

  40. Miyatake Y, Ikeda H, Ishizu A, Baba T, Ichihashi T, Suzuki A et al (2006) Role of neuronal interferon-gamma in the development of myelopathy in rats infected with human T-cell leukemia virus type 1. Am J Pathol 169(1):189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Refaat A, Zhou Y, Suzuki S, Takasaki I, Koizumi K, Yamaoka S et al (2011) Distinct roles of transforming growth factor-beta-activated kinase 1 (TAK1)-c-Rel and interferon regulatory factor 4 (IRF4) pathways in human T cell lymphotropic virus 1-transformed T helper 17 cells producing interleukin-9. J Biol Chem 286(24):21092–21099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nishimoto N, Yoshizaki K, Eiraku N, Machigashira K, Tagoh H, Ogata A et al (1990) Elevated levels of interleukin-6 in serum and cerebrospinal fluid of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neurol Sci 97(2-3):183–193

    Article  CAS  PubMed  Google Scholar 

  43. Brites C, Abrahao M, Bozza P, Netto EM, Lyra A, Bahia F (2018) Infection by HTLV-1 is associated with high levels of proinflammatory cytokines in HIV-HCV-coinfected patients. J Acquir Immune Defic Syndr 77(2):230–234

    Article  CAS  PubMed  Google Scholar 

  44. Aranami T, Yamamura T (2008) Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int 57(2):115–120

    Article  CAS  PubMed  Google Scholar 

  45. Hiltensperger M, Korn T (2018) The interleukin (IL)-23/T helper (Th)17 axis in experimental autoimmune encephalomyelitis and multiple sclerosis. Cold Spring Harb Perspect Med 8(1)

  46. Mah AY, Cooper MA (2016) Metabolic regulation of natural killer Cell IFN-gamma production. Crit Rev Immunol 36(2):131–147

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alspach E, Lussier DM, Schreiber RD (2019) Interferon gamma and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol 11(3)

  48. Tang C, Chen S, Qian H, Huang W (2012) Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology 135(2):112–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arellano G, Ottum PA, Reyes LI, Burgos PI, Naves R (2015) Stage-specific role of interferon-gamma in experimental autoimmune encephalomyelitis and multiple sclerosis. Front Immunol 6:492

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dungan LS, McGuinness NC, Boon L, Lynch MA, Mills KH (2014) Innate IFN-gamma promotes development of experimental autoimmune encephalomyelitis: a role for NK cells and M1 macrophages. Eur J Immunol 44(10):2903–2917

    Article  CAS  PubMed  Google Scholar 

  51. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  52. Zu DM, Zhang L (2022) Assessment of mechanisms of infectious pneumonia based on expression of fibrinogen, procalcitonin, high-sensitivity C-reactive protein expression, T helper 17 cells, regulatory T cells interleukin-10, and interleukin-17. Transl Pediatr 11(1):73–84

    Article  PubMed  PubMed Central  Google Scholar 

  53. Beebe AM, Cua DJ, de Waal MR (2002) The role of interleukin-10 in autoimmune disease: systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Cytokine Growth Factor Rev 13(4-5):403–412

    Article  CAS  PubMed  Google Scholar 

  54. Vogel DY, Kooij G, Heijnen PD, Breur M, Peferoen LA, van der Valk P et al (2015) GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur J Immunol 45(6):1808–1819

    Article  CAS  PubMed  Google Scholar 

  55. Uzawa A, Mori M, Kuwabara S (2014) Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications. Brain Pathol 24(1):67–73

    Article  CAS  PubMed  Google Scholar 

  56. Himes SR, Coles LS, Katsikeros R, Lang RK, Shannon MF (1993) HTLV-1 tax activation of the GM-CSF and G-CSF promoters requires the interaction of NF-kB with other transcription factor families. Oncogene 8(12):3189–3197

  57. Zhang L, Yuan S, Cheng G, Guo B (2011) Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation. PLoS One 6(12):e28432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA et al (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8(12):1363–1371

    Article  CAS  PubMed  Google Scholar 

  59. Yamashita I, Katamine S, Moriuchi R, Nakamura Y, Miyamoto T, Eguchi K et al (1994) Transactivation of the human interleukin-6 gene by human T-lymphotropic virus type 1 Tax protein. Blood 84(5):1573–1578

    Article  CAS  PubMed  Google Scholar 

  60. Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P (2000) Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 12(7):1092–1099

    Article  CAS  PubMed  Google Scholar 

  61. Dodon MD, Li Z, Hamaia S, Gazzolo L (2004) Tax protein of human T-cell leukaemia virus type 1 induces interleukin 17 gene expression in T cells. J Gen Virol 85(Pt 7):1921–1932

    Article  PubMed  Google Scholar 

  62. Sarkis S, Belrose G, Peloponese JM Jr, Olindo S, Cesaire R, Mesnard JM et al (2013) Increased osteopontin expression in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patient cells is associated with IL-17 expression. J Clin Virol 58(1):295–298

    Article  CAS  PubMed  Google Scholar 

  63. Subramanian K, Dierckx T, Khouri R, Menezes SM, Kagdi H, Taylor GP et al (2019) Decreased RORC expression and downstream signaling in HTLV-1-associated adult T-cell lymphoma/leukemia uncovers an antiproliferative IL17 link: a potential target for immunotherapy? Int J Cancer 144(7):1664–1675

    Article  CAS  PubMed  Google Scholar 

  64. Leal FE, Ndhlovu LC, Hasenkrug AM, Bruno FR, Carvalho KI, Wynn-Williams H et al (2013) Expansion in CD39(+) CD4(+) immunoregulatory t cells and rarity of Th17 cells in HTLV-1 infected patients is associated with neurological complications. PLoS Negl Trop Dis 7(2):e2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carvalho NB, de Lourdes BM, Souza AS, Netto EM, Arruda S, Santos SB et al (2018) Impaired TNF, IL-1beta, and IL-17 production and increased susceptibility to Mycobacterium tuberculosis infection in HTLV-1 infected individuals. Tuberculosis (Edinb) 108:35–40

    Article  CAS  PubMed  Google Scholar 

  66. Neco H, Teixeira VGS, Trindade ACL, Magalhaes PMR, Lorena VMB, Vasconcelos LR et al (2017) IL17A polymorphism is not associated with human T-lymphotropic virus 1-associated myelopathy/tropical spastic paraparesis. Viral Immunol 30(4):298–301

    Article  CAS  PubMed  Google Scholar 

  67. Yamano Y, Araya N, Sato T, Utsunomiya A, Azakami K, Hasegawa D et al (2009) Abnormally high levels of virus-infected IFN-gamma+ CCR4+ CD4+ CD25+ T cells in a retrovirus-associated neuroinflammatory disorder. PLoS One 4(8):e6517

    Article  PubMed  PubMed Central  Google Scholar 

  68. Seich Al Basatena NK, Macnamara A, Vine AM, Thio CL, Astemborski J, Usuku K et al (2011) KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog. 7(10):e1002270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jeffery KJ, Usuku K, Hall SE, Matsumoto W, Taylor GP, Procter J et al (1999) HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci USA 96(7):3848–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Espinoza JL, Takami A, Nakata K, Onizuka M, Kawase T, Akiyama H et al (2011) A genetic variant in the IL-17 promoter is functionally associated with acute graft-versus-host disease after unrelated bone marrow transplantation. PLoS One 6(10):e26229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nordang GB, Viken MK, Hollis-Moffatt JE, Merriman TR, Forre OT, Helgetveit K et al (2009) Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology (Oxford) 48(4):367–370

    Article  CAS  PubMed  Google Scholar 

  72. Liu J, Xu Q, Yuan Q, Wang Z, Xing C, Yuan Y (2015) Association of IL-17A and IL-17F polymorphisms with gastric cancer risk in Asians: a meta-analysis. Hum Immunol 76(1):6–12

    Article  CAS  PubMed  Google Scholar 

  73. Domingos JA, Soares LS, Bandeira LM, Bonin CM, Vicente AC, Zanella L et al (2017) Cytokine profile and proviral load among Japanese immigrants and non-Japanese infected with HTLV-1 in a non-endemic area of Brazil. PLoS One 12(4):e0174869

    Article  PubMed  PubMed Central  Google Scholar 

  74. Santos SB, Oliveira P, Luna T, Souza A, Nascimento M, Siqueira I et al (2012) Immunological and viral features in patients with overactive bladder associated with human T-cell lymphotropic virus type 1 infection. J Med Virol 84(11):1809–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garlet GP, Giozza SP, Silveira EM, Claudino M, Santos SB, Avila-Campos MJ et al (2010) Association of human T lymphotropic virus 1 amplification of periodontitis severity with altered cytokine expression in response to a standard periodontopathogen infection. Clin Infect Dis 50(3):e11–e18

    Article  CAS  PubMed  Google Scholar 

  76. Kagi D, Ledermann B, Burki K, Zinkernagel RM, Hengartner H (1996) Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 14:207–232

    Article  CAS  PubMed  Google Scholar 

  77. Goon PK, Hanon E, Igakura T, Tanaka Y, Weber JN, Taylor GP et al (2002) High frequencies of Th1-type CD4(+) T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Blood 99(9):3335–3341

    Article  CAS  PubMed  Google Scholar 

  78. Iwasaki Y (1993) Human T cell leukemia virus type I infection and chronic myelopathy. Brain Pathol 3(1):1–10

    Article  CAS  PubMed  Google Scholar 

  79. Hanon E, Goon P, Taylor GP, Hasegawa H, Tanaka Y, Weber JN et al (2001) High production of interferon gamma but not interleukin-2 by human T-lymphotropic virus type I-infected peripheral blood mononuclear cells. Blood 98(3):721–726

    Article  CAS  PubMed  Google Scholar 

  80. Journo C, Mahieux R (2011) HTLV-1 and innate immunity. Viruses 3(8):1374–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101

    Article  CAS  PubMed  Google Scholar 

  82. Hieshima K, Nagakubo D, Nakayama T, Shirakawa AK, Jin Z, Yoshie O (2008) Tax-inducible production of CC chemokine ligand 22 by human T cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. J Immunol 180(2):931–939

    Article  CAS  PubMed  Google Scholar 

  83. Yoshie O (2021) CCR4 as a therapeutic target for cancer immunotherapy. Cancers (Basel) 13(21)

  84. Leung K, Nabel GJ (1988) HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-kappa B-like factor. Nature 333(6175):776–778

    Article  CAS  PubMed  Google Scholar 

  85. Zhao H, Bo C, Kang Y, Li H (2017) What else can CD39 tell us? Front Immunol 8:727

    Article  PubMed  PubMed Central  Google Scholar 

  86. Alvarez-Sanchez N, Cruz-Chamorro I, Diaz-Sanchez M, Lardone PJ, Guerrero JM, Carrillo-Vico A (2019) Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients. Sci Rep 9(1):2302

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW et al (2005) Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest 115(5):1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Toulza F, Nosaka K, Tanaka Y, Schioppa T, Balkwill F, Taylor GP et al (2010) Human T-lymphotropic virus type 1-induced CC chemokine ligand 22 maintains a high frequency of functional FoxP3+ regulatory T cells. J Immunol 185(1):183–189

    Article  CAS  PubMed  Google Scholar 

  89. Shimizu Y, Takamori A, Utsunomiya A, Kurimura M, Yamano Y, Hishizawa M et al (2009) Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer Sci 100(3):481–489

    Article  CAS  PubMed  Google Scholar 

  90. Thibaudin M, Chaix M, Boidot R, Vegran F, Derangere V, Limagne E et al (2016) Human ectonucleotidase-expressing CD25(high) Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncoimmunology 5(1):e1055444

    Article  PubMed  Google Scholar 

  91. Lang C, Wang J, Chen L (2017) CD25-expressing Th17 cells mediate CD8(+) T cell suppression in CTLA-4 dependent mechanisms in pancreatic ductal adenocarcinoma. Exp Cell Res 360(2):384–389

    Article  CAS  PubMed  Google Scholar 

  92. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744–748

    Article  CAS  PubMed  Google Scholar 

  93. Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E (2009) Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 132(Pt 12):3329–3341

    Article  PubMed  Google Scholar 

  94. Moser T, Akgun K, Proschmann U, Sellner J, Ziemssen T (2020) The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev 19(10):102647

    Article  CAS  PubMed  Google Scholar 

  95. Melnikov M, Rogovskii V, Boyksmall o CA, Pashenkov M (2020) Dopaminergic therapeutics in multiple sclerosis: focus on Th17-cell functions. J Neuroimmune Pharmacol 15(1):37–47

    Article  PubMed  Google Scholar 

  96. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N et al (2009) Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 66(3):390–402

    Article  CAS  PubMed  Google Scholar 

  97. van Langelaar J, van der Vuurst de Vries RM, Janssen M, Wierenga-Wolf AF, Spilt IM, Siepman TA et al (2018) T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain 141(5):1334–1349

    Article  PubMed  Google Scholar 

  98. Ntolkeras G, Barba C, Mavropoulos A, Vasileiadis GK, Dardiotis E, Sakkas LI et al (2019) On the immunoregulatory role of statins in multiple sclerosis: the effects on Th17 cells. Immunol Res 67(4-5):310–324

    Article  CAS  PubMed  Google Scholar 

  99. Sie C, Korn T, Mitsdoerffer M (2014) Th17 cells in central nervous system autoimmunity. Exp Neurol 262(Pt A):18–27

    Article  CAS  PubMed  Google Scholar 

  100. Duhen R, Glatigny S, Arbelaez CA, Blair TC, Oukka M, Bettelli E (2013) Cutting edge: the pathogenicity of IFN-gamma-producing Th17 cells is independent of T-bet. J Immunol 190(9):4478–4482

    Article  CAS  PubMed  Google Scholar 

  101. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ et al (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12(3):255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Belpaire A, van Geel N, Speeckaert R (2022) From IL-17 to IFN-gamma in inflammatory skin disorders: is transdifferentiation a potential treatment target? Front Immunol 13:932265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tsukasaki K, Tobinai K (2014) Human T-cell lymphotropic virus type I-associated adult T-cell leukemia-lymphoma: new directions in clinical research. Clin Cancer Res 20(20):5217–5225

    Article  CAS  PubMed  Google Scholar 

  104. Yamauchi J, Coler-Reilly A, Sato T, Araya N, Yagishita N, Ando H et al (2015) Mogamulizumab, an anti-CCR4 antibody, targets human T-lymphotropic virus type 1-infected CD8+ and CD4+ T cells to treat associated myelopathy. J Infect Dis 211(2):238–248

    Article  CAS  PubMed  Google Scholar 

  105. Toulza F, Heaps A, Tanaka Y, Taylor GP, Bangham CR (2008) High frequency of CD4+FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response. Blood 111(10):5047–5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee GR (2018) The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 19(3)

  107. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M (2017) The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 15(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  108. Oh U, Grant C, Griffith C, Fugo K, Takenouchi N, Jacobson S (2006) Reduced Foxp3 protein expression is associated with inflammatory disease during human t lymphotropic virus type 1 Infection. J Infect Dis 193(11):1557–1566

    Article  CAS  PubMed  Google Scholar 

  109. Danikowski KM, Jayaraman S, Prabhakar BS (2017) Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 14(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lazibat I, Rubinic Majdak M, Zupanic S (2018) Multiple sclerosis: new aspects of immunopathogenesis. Acta Clin Croat 57(2):352–361

    PubMed  PubMed Central  Google Scholar 

  111. Garg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5(9):e00362

    Article  PubMed  PubMed Central  Google Scholar 

  112. Holmoy T, Hestvik AL (2008) Multiple sclerosis: immunopathogenesis and controversies in defining the cause. Curr Opin Infect Dis 21(3):271–278

    Article  PubMed  Google Scholar 

  113. Orland JR, Engstrom J, Fridey J, Sacher RA, Smith JW, Nass C et al (2003) Prevalence and clinical features of HTLV neurologic disease in the HTLV Outcomes Study. Neurology 61(11):1588–1594

    Article  CAS  PubMed  Google Scholar 

  114. Aye MM, Matsuoka E, Moritoyo T, Umehara F, Suehara M, Hokezu Y et al (2000) Histopathological analysis of four autopsy cases of HTLV-I-associated myelopathy/tropical spastic paraparesis: inflammatory changes occur simultaneously in the entire central nervous system. Acta Neuropathol 100(3):245–252

    Article  CAS  PubMed  Google Scholar 

  115. Iwasaki Y (1990) Pathology of chronic myelopathy associated with HTLV-I infection (HAM/TSP). J Neurol Sci 96(1):103–123

    Article  CAS  PubMed  Google Scholar 

  116. Yoshioka A, Hirose G, Ueda Y, Nishimura Y, Sakai K (1993) Neuropathological studies of the spinal cord in early stage HTLV-I-associated myelopathy (HAM). J Neurol Neurosurg Psychiatry 56(9):1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cooper SA, van der Loeff MS, Taylor GP (2009) The neurology of HTLV-1 infection. Pract Neurol 9(1):16–26

    Article  PubMed  Google Scholar 

  118. Comabella M, Khoury SJ (2012) Immunopathogenesis of multiple sclerosis. Clin Immunol 142(1):2–8

    Article  CAS  PubMed  Google Scholar 

  119. Ijichi S, Izumo S, Eiraku N, Machigashira K, Kubota R, Nagai M et al (1993) An autoaggressive process against bystander tissues in HTLV-I-infected individuals: a possible pathomechanism of HAM/TSP. Med Hypotheses 41(6):542–547

    Article  CAS  PubMed  Google Scholar 

  120. Umehara F, Izumo S, Nakagawa M, Ronquillo AT, Takahashi K, Matsumuro K et al (1993) Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol 52(4):424–430

    Article  CAS  PubMed  Google Scholar 

  121. Grindstaff P, Gruener G (2005) The peripheral nervous system complications of HTLV-1 myelopathy (HAM/TSP) syndromes. Semin Neurol 25(3):315–327

    Article  PubMed  Google Scholar 

  122. Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D et al (2011) The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood 117(11):3113–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Abe M, Umehara F, Kubota R, Moritoyo T, Izumo S, Osame M (1999) Activation of macrophages/microglia with the calcium-binding proteins MRP14 and MRP8 is related to the lesional activities in the spinal cord of HTLV-I associated myelopathy. J Neurol 246(5):358–364

    Article  CAS  PubMed  Google Scholar 

  124. Jacobson S (2002) Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J Infect Dis 186(Suppl 2):S187–S192

    Article  PubMed  Google Scholar 

  125. Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH (2020) Immunopathogenesis and cellular interactions in human T-cell leukemia virus type 1 associated myelopathy/tropical spastic paraparesis. Front Microbiol 11:614940

    Article  PubMed  PubMed Central  Google Scholar 

  126. Korn T, Kallies A (2017) T cell responses in the central nervous system. Nat Rev Immunol 17(3):179–194

    Article  CAS  PubMed  Google Scholar 

  127. Balasa R, Barcutean L, Balasa A, Motataianu A, Roman-Filip C, Manu D (2020) The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol 81(5):237–243

    Article  CAS  PubMed  Google Scholar 

  128. Afonso PV, Ozden S, Cumont MC, Seilhean D, Cartier L, Rezaie P et al (2008) Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathog 4(11):e1000205

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tsukada N, Tanaka Y, Yanagisawa N (1989) Autoantibodies to brain endothelial cells in the sera of patients with human T-lymphotropic virus type I associated myelopathy and other demyelinating disorders. J Neurol Sci 90(1):33–42

    Article  CAS  PubMed  Google Scholar 

  130. Ikegami M, Umehara F, Ikegami N, Maekawa R, Osame M (2002) Selective matrix metalloproteinase inhibitor, N-biphenyl sulfonyl phenylalanine hydroxamic acid, inhibits the migration of CD4+ T lymphocytes in patients with HTLV-I-associated myelopathy. J Neuroimmunol 127(1-2):134–138

    Article  CAS  PubMed  Google Scholar 

  131. Afonso PV, Ozden S, Prevost MC, Schmitt C, Seilhean D, Weksler B et al (2007) Human blood-brain barrier disruption by retroviral-infected lymphocytes: role of myosin light chain kinase in endothelial tight-junction disorganization. J Immunol 179(4):2576–2583

    Article  CAS  PubMed  Google Scholar 

  132. Curis C, Percher F, Jeannin P, Montange T, Chevalier SA, Seilhean D et al (2016) Human T-lymphotropic virus type 1-induced overexpression of activated leukocyte cell adhesion molecule (ALCAM) facilitates trafficking of infected lymphocytes through the blood-brain barrier. J Virol 90(16):7303–7312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E et al (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 24(4):1023–1034

    Article  CAS  PubMed  Google Scholar 

  134. Wojkowska DW, Szpakowski P, Ksiazek-Winiarek D, Leszczynski M, Glabinski A (2014) Interactions between neutrophils, Th17 cells, and chemokines during the initiation of experimental model of multiple sclerosis. Mediators Inflamm 2014:590409

    Article  PubMed  PubMed Central  Google Scholar 

  135. O’Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC et al (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181(6):3750–3754

    Article  PubMed  Google Scholar 

  136. Imaizumi Y, Sugita S, Yamamoto K, Imanishi D, Kohno T, Tomonaga M et al (2002) Human T cell leukemia virus type-I Tax activates human macrophage inflammatory protein-3 alpha/CCL20 gene transcription via the NF-kappa B pathway. Int Immunol 14(2):147–155

    Article  CAS  PubMed  Google Scholar 

  137. Baba M, Imai T, Nishimura M, Kakizaki M, Takagi S, Hieshima K et al (1997) Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem 272(23):14893–14898

    Article  CAS  PubMed  Google Scholar 

  138. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514–523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS performed data collection, prepared the figures (by Adobe Illustrator and Microsoft PowerPoint), and was the major contributor to writing the manuscript. S-HM conceptualized the review article, critically revised the manuscript, had a minor contribution to writing, and provided oversight and verification of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Sayed-Hamidreza Mozhgani.

Ethics declarations

Ethics Approval

N/A.

Consent to Participate

N/A.

Consent for Publication

All the authors give their consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei, M., Mozhgani, SH. Th17/IL-17 Axis in HTLV-1-Associated Myelopathy Tropical Spastic Paraparesis and Multiple Sclerosis: Novel Insights into the Immunity During HAMTSP. Mol Neurobiol 60, 3839–3854 (2023). https://doi.org/10.1007/s12035-023-03303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03303-0

Keywords

Navigation