Skip to main content

Advertisement

Log in

Adenosinergic Pathway in Parkinson’s Disease: Recent Advances and Therapeutic Perspective

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

PD:

Parkinson’s disease

L-DOPA:

Levodopa

DA:

Dopamine

AP:

Adenosinergic pathway

LBs:

Lewy bodies

Ado:

Adenosine

ATP:

Adenosine triphosphate

CNS:

Central nerve system

ARs:

Adenosine receptors

GPCRs:

G protein-coupled receptors

AC:

Adenylate cyclase

PDE:

Phosphodiesterase

ENT:

Equilibrative nucleoside transporters

AK:

Adenylate kinase

NDPK:

Nucleoside-diphosphate kinase

ADA:

Adenosine deaminase

PKA:

cAMP-dependent protein kinase

D2R:

Dopamine D2 receptor

FDA:

Food and Drug Administration

TJMs:

Tremulous jaw movements

MSNs:

Medium spiny neurons

RECAP:

Retrosynthetic Combinatorial Analysis Procedure

References

  1. Zhao Y, Yang G (2021) Potential of extracellular vesicles in the Parkinson’s disease - pathological mediators and biomarkers. Neurochem Int 144:104974. https://doi.org/10.1016/j.neuint.2021.104974

    Article  CAS  PubMed  Google Scholar 

  2. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283(35):23542–23556. https://doi.org/10.1074/jbc.M801992200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roodveldt C, Labrador-Garrido A, Gonzalez-Rey E, Fernandez-Montesinos R, Caro M, Lachaud CC, Waudby CA, Delgado M, Dobson CM, Pozo D (2010) Glial innate immunity generated by non-aggregated alpha-synuclein in mouse: differences between wild-type and Parkinson’s disease-linked mutants. PLoS One 5(10):e13481. https://doi.org/10.1371/journal.pone.0013481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhall R, Kreitzman DL (2016) Advances in levodopa therapy for Parkinson disease: review of RYTARY (carbidopa and levodopa) clinical efficacy and safety. Neurology 86(14 Suppl 1):S13–S24. https://doi.org/10.1212/WNL.0000000000002510

    Article  CAS  PubMed  Google Scholar 

  5. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B (2010) Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 9(11):1106–1117. https://doi.org/10.1016/S1474-4422(10)70218-0

    Article  CAS  PubMed  Google Scholar 

  6. Fisone G, Bezard E (2011) Molecular mechanisms of l-DOPA-induced dyskinesia. Int Rev Neurobiol 98:95–122. https://doi.org/10.1016/B978-0-12-381328-2.00004-3

    Article  CAS  PubMed  Google Scholar 

  7. Kalia LV, Brotchie JM, Fox SH (2013) Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Movement disorders : official journal of the Movement Disorder Society 28(2):131–144. https://doi.org/10.1002/mds.25273

    Article  CAS  PubMed  Google Scholar 

  8. Ribeiro JA, Sebastiao AM, de Mendonca A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68(6):377–392. https://doi.org/10.1016/s0301-0082(02)00155-7

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Castro F, Zappettini S, Pressey JC, Silva CG, Russeau M, Gervasi N, Figueiredo M, Montmasson C, Renner M, Canas PM, Goncalves FQ, Alcada-Morais S, Szabo E, Rodrigues RJ, Agostinho P, Tome AR, Caillol G, Thoumine O, Nicol X et al (2021) Convergence of adenosine and GABA signaling for synapse stabilization during development. Science 374(6568):eabk2055. https://doi.org/10.1126/science.abk2055

    Article  CAS  PubMed  Google Scholar 

  10. Shimo Y, Maeda T, Chiu SW, Yamaguchi T, Kashihara K, Tsuboi Y, Nomoto M, Hattori N, Watanabe H, Saiki H, Group JF (2021) Influence of istradefylline on non-motor symptoms of Parkinson’s disease: a subanalysis of a 1-year observational study in Japan (J-FIRST). Parkinsonism Relat Disord 91:115–120. https://doi.org/10.1016/j.parkreldis.2021.09.015

    Article  CAS  PubMed  Google Scholar 

  11. Ballarin M, Fredholm BB, Ambrosio S, Mahy N (1991) Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand 142(1):97–103. https://doi.org/10.1111/j.1748-1716.1991.tb09133.x

    Article  CAS  PubMed  Google Scholar 

  12. Lazarus M, Chen JF, Huang ZL, Urade Y, Fredholm BB (2019) Adenosine and sleep. Handb Exp Pharmacol 253:359–381. https://doi.org/10.1007/164_2017_36

    Article  CAS  PubMed  Google Scholar 

  13. Chen JF (2014) Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol 119:257–307. https://doi.org/10.1016/B978-0-12-801022-8.00012-X

    Article  PubMed  Google Scholar 

  14. Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787. https://doi.org/10.1146/annurev.pharmtox.41.1.775

    Article  CAS  PubMed  Google Scholar 

  15. Tanganelli S, Sandager Nielsen K, Ferraro L, Antonelli T, Kehr J, Franco R, Ferre S, Agnati LF, Fuxe K, Scheel-Kruger J (2004) Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson’s disease. Parkinsonism Relat Disord 10(5):273–280. https://doi.org/10.1016/j.parkreldis.2004.02.015

    Article  CAS  PubMed  Google Scholar 

  16. Choi IY, Lee JC, Ju C, Hwang S, Cho GS, Lee HW, Choi WJ, Jeong LS, Kim WK (2011) A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol 179(4):2042–2052. https://doi.org/10.1016/j.ajpath.2011.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kachroo A, Schwarzschild MA (2012) Adenosine A2A receptor gene disruption protects in an alpha-synuclein model of Parkinson’s disease. Ann Neurol 71(2):278–282. https://doi.org/10.1002/ana.22630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen KZ, Johnson SW (1997) Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones. J Physiol 505(Pt 1):153–163. https://doi.org/10.1111/j.1469-7793.1997.153bc.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Wang D, Zheng X, Li Y, Li Y, Ma T, Li J, Sun J, Wang Y, Ma Q (2022) A2B adenosine receptor inhibition ameliorates hypoxic-ischemic injury in neonatal mice via PKC/Erk/Creb/HIF-1alpha signaling pathway. Brain Res 1782:147837. https://doi.org/10.1016/j.brainres.2022.147837

    Article  CAS  PubMed  Google Scholar 

  20. Rimondini R, Ferre S, Gimenez-Llort L, Ogren SO, Fuxe K (1998) Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 347(2-3):153–158. https://doi.org/10.1016/s0014-2999(98)00107-1

    Article  CAS  PubMed  Google Scholar 

  21. Alchera E, Chandrashekar BR, Clemente N, Borroni E, Boldorini R, Carini R (2021) Ischemia/reperfusion injury of fatty liver is protected by A2AR and exacerbated by A1R stimulation through opposite effects on ASK1 activation. Cells 10(11). https://doi.org/10.3390/cells10113171

  22. Hinz S, Navarro G, Borroto-Escuela D, Seibt BF, Ammon YC, de Filippo E, Danish A, Lacher SK, Cervinkova B, Rafehi M, Fuxe K, Schiedel AC, Franco R, Muller CE (2018) Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget 9(17):13593–13611. https://doi.org/10.18632/oncotarget.24423

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferraro L, Beggiato S, Tomasini MC, Fuxe K, Antonelli T, Tanganelli S (2012) A(2A)/D(2) receptor heteromerization in a model of Parkinson’s disease. Focus on striatal aminoacidergic signaling. Brain Res 1476:96–107. https://doi.org/10.1016/j.brainres.2012.01.032

    Article  CAS  PubMed  Google Scholar 

  24. Franco R, Lluis C, Canela EI, Mallol J, Agnati L, Casado V, Ciruela F, Ferre S, Fuxe K (2007) Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm (Vienna) 114(1):93–104. https://doi.org/10.1007/s00702-006-0566-7

    Article  CAS  PubMed  Google Scholar 

  25. Antonelli T, Fuxe K, Agnati L, Mazzoni E, Tanganelli S, Tomasini MC, Ferraro L (2006) Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson’s disease. Relevance for L-dopa induced dyskinesias. J Neurol Sci 248(1-2):16–22. https://doi.org/10.1016/j.jns.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  26. Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367. https://doi.org/10.1016/j.molmed.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang W, Xu Y, Zhang Y, Zhang P, Zhang Q, Zhang Z, Xu F (2019) Metabolomics-driven identification of adenosine deaminase as therapeutic target in a mouse model of Parkinson’s disease. J Neurochem 150(3):282–295. https://doi.org/10.1111/jnc.14774

    Article  CAS  PubMed  Google Scholar 

  28. Nagayama H, Kano O, Murakami H, Ono K, Hamada M, Toda T, Sengoku R, Shimo Y, Hattori N (2019) Effect of istradefylline on mood disorders in Parkinson’s disease. J Neurol Sci 396:78–83. https://doi.org/10.1016/j.jns.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  29. Jenner P, Mori A, Kanda T (2020) Can adenosine A2A receptor antagonists be used to treat cognitive impairment, depression or excessive sleepiness in Parkinson’s disease? Parkinsonism Relat Disord 80(Suppl 1):S28–S36. https://doi.org/10.1016/j.parkreldis.2020.09.022

    Article  PubMed  Google Scholar 

  30. Meng F, Guo Z, Hu Y, Mai W, Zhang Z, Zhang B, Ge Q, Lou H, Guo F, Chen J, Duan S, Gao Z (2019) CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling. Brain J Neurol 142(3):700–718. https://doi.org/10.1093/brain/awy351

    Article  Google Scholar 

  31. Hall J, Frenguelli BG (2018) The combination of ribose and adenine promotes adenosine release and attenuates the intensity and frequency of epileptiform activity in hippocampal slices: evidence for the rapid depletion of cellular ATP during electrographic seizures. J Neurochem 147(2):178–189. https://doi.org/10.1111/jnc.14543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH (2019) Research progress on adenosine in central nervous system diseases. CNS neuroscience & therapeutics 25(9):899–910. https://doi.org/10.1111/cns.13190

    Article  Google Scholar 

  33. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg's Arch Pharmacol 362(4-5):299–309. https://doi.org/10.1007/s002100000309

    Article  CAS  Google Scholar 

  34. Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM, Pritchard EM, Kaplan DL, Boison D (2013) Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest 123(8):3552–3563. https://doi.org/10.1172/JCI65636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niechi I, Uribe-Ojeda A, Erices JI, Torres A, Uribe D, Rocha JD, Silva P, Richter HG, San Martin R, Quezada C (2019) Adenosine depletion as a new strategy to decrease glioblastoma stem-like cells aggressiveness. Cells 8(11). https://doi.org/10.3390/cells8111353

  36. Lloyd HG, Fredholm BB (1995) Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 26(4):387–395. https://doi.org/10.1016/0197-0186(94)00144-j

    Article  CAS  PubMed  Google Scholar 

  37. Jin K, Mao C, Chen L, Wang L, Liu Y, Yuan J (2021) Adenosinergic pathway: a hope in the immunotherapy of glioblastoma. Cancers 13(2). https://doi.org/10.3390/cancers13020229

  38. Matyash M, Zabiegalov O, Wendt S, Matyash V, Kettenmann H (2017) The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS One 12(4):e0175012. https://doi.org/10.1371/journal.pone.0175012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parkinson FE, Xiong W (2004) Stimulus- and cell-type-specific release of purines in cultured rat forebrain astrocytes and neurons. J Neurochem 88(5):1305–1312. https://doi.org/10.1046/j.1471-4159.2003.02266.x

    Article  CAS  PubMed  Google Scholar 

  40. Parkinson FE, Xiong W, Zamzow CR (2005) Astrocytes and neurons: different roles in regulating adenosine levels. Neurol Res 27(2):153–160. https://doi.org/10.1179/016164105X21878

    Article  CAS  PubMed  Google Scholar 

  41. Chang CP, Wu KC, Lin CY, Chern Y (2021) Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 28(1):70. https://doi.org/10.1186/s12929-021-00766-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillis P, Malter JS (1991) The adenosine-uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine, and oncogene mRNAs. J Biol Chem 266(5):3172–3177

    Article  CAS  PubMed  Google Scholar 

  43. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2):358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  44. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9. https://doi.org/10.1038/cddis.2009.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao X, Li LP, Qin XH, Li SJ, Zhang M, Wang Q, Hu HH, Fang YY, Gao YB, Li XW, Sun LR, Xiong WC, Gao TM, Zhu XH (2013) Astrocytic adenosine 5'-triphosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 31(8):1633–1643. https://doi.org/10.1002/stem.1408

    Article  CAS  PubMed  Google Scholar 

  46. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    CAS  PubMed  Google Scholar 

  47. Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  48. Rankovic Z, Brust TF, Bohn LM (2016) Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 26(2):241–250. https://doi.org/10.1016/j.bmcl.2015.12.024

    Article  CAS  PubMed  Google Scholar 

  49. Karuppagounder SS, Uthaythas S, Govindarajulu M, Ramesh S, Parameshwaran K, Dhanasekaran M (2021) Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochem Int 148:105066. https://doi.org/10.1016/j.neuint.2021.105066

    Article  CAS  PubMed  Google Scholar 

  50. Vorovenci RJ, Antonini A (2015) The efficacy of oral adenosine A(2A) antagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother 15(12):1383–1390. https://doi.org/10.1586/14737175.2015.1113131

    Article  CAS  PubMed  Google Scholar 

  51. Jaberi E, Rohani M, Shahidi GA, Nafissi S, Arefian E, Soleimani M, Moghadam A, Arzenani MK, Keramatian F, Klotzle B, Fan JB, Turk C, Steemers F, Elahi E (2016) Mutation in ADORA1 identified as likely cause of early-onset parkinsonism and cognitive dysfunction. Movement disorders : official journal of the Movement Disorder Society 31(7):1004–1011. https://doi.org/10.1002/mds.26627

    Article  CAS  PubMed  Google Scholar 

  52. Massari CM, Constantino LC, Tasca CI (2021) Adenosine A1 and A2A receptors are involved on guanosine protective effects against oxidative burst and mitochondrial dysfunction induced by 6-OHDA in striatal slices. Purinergic Signal 17(2):247–254. https://doi.org/10.1007/s11302-021-09765-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roberts BM, Lambert E, Livesey JA, Wu Z, Li Y, Cragg SJ (2022) Dopamine release in nucleus accumbens is under tonic inhibition by adenosine A1 receptors regulated by astrocytic ENT1 and dysregulated by ethanol. J Neurosci 42(9):1738–1751. https://doi.org/10.1523/JNEUROSCI.1548-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nasrollahi-Shirazi S, Szollosi D, Yang Q, Muratspahic E, El-Kasaby A, Sucic S, Stockner T, Nanoff C, Freissmuth M (2020) Functional impact of the G279S substitution in the adenosine A1-receptor (A1R-G279S(7.44)), a mutation associated with Parkinson’s disease. Mol Pharmacol 98(3):250–266. https://doi.org/10.1124/molpharm.120.000003

    Article  CAS  PubMed  Google Scholar 

  55. Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ (2006) Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br J Pharmacol 148(3):314–325. https://doi.org/10.1038/sj.bjp.0706732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stockwell J, Jakova E, Cayabyab FS (2017) Adenosine A1 and A2A receptors in the brain: current research and their role in neurodegeneration. Molecules 22(4). https://doi.org/10.3390/molecules22040676

  57. Lv YC, Gao AB, Yang J, Zhong LY, Jia B, Ouyang SH, Gui L, Peng TH, Sun S, Cayabyab FS (2020) Long-term adenosine A1 receptor activation-induced sortilin expression promotes alpha-synuclein upregulation in dopaminergic neurons. Neural Regen Res 15(4):712–723. https://doi.org/10.4103/1673-5374.266916

    Article  CAS  PubMed  Google Scholar 

  58. Jakova E, Moutaoufik MT, Lee JS, Babu M, Cayabyab FS (2022) Adenosine A1 receptor ligands bind to alpha-synuclein: implications for alpha-synuclein misfolding and alpha-synucleinopathy in Parkinson’s disease. Translational neurodegeneration 11(1):9. https://doi.org/10.1186/s40035-022-00284-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanda T, Jenner P (2020) Can adenosine A2A receptor antagonists modify motor behavior and dyskinesia in experimental models of Parkinson’s disease? Parkinsonism Relat Disord 80(Suppl 1):S21–S27. https://doi.org/10.1016/j.parkreldis.2020.09.026

    Article  PubMed  Google Scholar 

  60. Gyoneva S, Shapiro L, Lazo C, Garnier-Amblard E, Smith Y, Miller GW, Traynelis SF (2014) Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson’s disease. Neurobiol Dis 67:191–202. https://doi.org/10.1016/j.nbd.2014.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang WW, Zhang MM, Zhang XR, Zhang ZR, Chen J, Feng L, Xie CL (2017) A meta-analysis of adenosine A2A receptor antagonists on levodopa-induced dyskinesia in vivo. Front Neurol 8:702. https://doi.org/10.3389/fneur.2017.00702

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18(2):152–160. https://doi.org/10.1002/(SICI)1098-1136(199610)18:2<152::AID-GLIA7>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  63. Marucci G, Ben DD, Lambertucci C, Navia AM, Spinaci A, Volpini R, Buccioni M (2021) Combined therapy of A1AR agonists and A2AAR antagonists in neuroinflammation. Molecules 26(4). https://doi.org/10.3390/molecules26041188

  64. Franco R, Reyes-Resina I, Aguinaga D, Lillo A, Jimenez J, Raich I, Borroto-Escuela DO, Ferreiro-Vera C, Canela EI, Sanchez de Medina V, Del Ser-Badia A, Fuxe K, Saura CA, Navarro G (2019) Potentiation of cannabinoid signaling in microglia by adenosine A2A receptor antagonists. Glia 67(12):2410–2423. https://doi.org/10.1002/glia.23694

    Article  PubMed  Google Scholar 

  65. Ferreira DG, Batalha VL, Vicente Miranda H, Coelho JE, Gomes R, Goncalves FQ, Real JI, Rino J, Albino-Teixeira A, Cunha RA, Outeiro TF, Lopes LV (2017) Adenosine A2A receptors modulate alpha-synuclein aggregation and toxicity. Cereb Cortex 27(1):718–730. https://doi.org/10.1093/cercor/bhv268

    Article  PubMed  Google Scholar 

  66. He Y, Huang L, Wang K, Pan X, Cai Q, Zhang F, Yang J, Fang G, Zhao X, You F, Feng Y, Li Y, Chen JF (2022) alpha-Synuclein selectively impairs motor sequence learning and value sensitivity: reversal by the adenosine A2A receptor antagonists. Cereb Cortex 32(4):808–823. https://doi.org/10.1093/cercor/bhab244

    Article  PubMed  Google Scholar 

  67. Kosmowska B, Ossowska K, Wardas J (2022) Blockade of adenosine A2A receptors inhibits tremulous jaw movements as well as expression of zif-268 and GAD65 mRNAs in brain motor structures. Behav Brain Res 417:113585. https://doi.org/10.1016/j.bbr.2021.113585

    Article  CAS  PubMed  Google Scholar 

  68. Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59(4):355–396. https://doi.org/10.1016/s0301-0082(99)00011-8

    Article  CAS  PubMed  Google Scholar 

  69. Diao HL, Xue Y, Han XH, Wang SY, Liu C, Chen WF, Chen L (2017) Adenosine A2A receptor modulates the activity of globus pallidus neurons in rats. Front Physiol 8:897. https://doi.org/10.3389/fphys.2017.00897

    Article  PubMed  PubMed Central  Google Scholar 

  70. Navarro G, Aguinaga D, Moreno E, Hradsky J, Reddy PP, Cortes A, Mallol J, Casado V, Mikhaylova M, Kreutz MR, Lluis C, Canela EI, McCormick PJ, Ferre S (2014) Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers. Chem Biol 21(11):1546–1556. https://doi.org/10.1016/j.chembiol.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hide I, Padgett WL, Jacobson KA, Daly JW (1992) A2A adenosine receptors from rat striatum and rat pheochromocytoma PC12 cells: characterization with radioligand binding and by activation of adenylate cyclase. Mol Pharmacol 41(2):352–359

    CAS  PubMed  Google Scholar 

  72. Merighi S, Bencivenni S, Vincenzi F, Varani K, Borea PA, Gessi S (2017) A2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacol Res 117:9–19. https://doi.org/10.1016/j.phrs.2016.11.024

    Article  CAS  PubMed  Google Scholar 

  73. Merighi S, Borea PA, Stefanelli A, Bencivenni S, Castillo CA, Varani K, Gessi S (2015) A2a and a2b adenosine receptors affect HIF-1alpha signaling in activated primary microglial cells. Glia 63(11):1933–1952. https://doi.org/10.1002/glia.22861

    Article  PubMed  Google Scholar 

  74. Fusco I, Ugolini F, Lana D, Coppi E, Dettori I, Gaviano L, Nosi D, Cherchi F, Pedata F, Giovannini MG, Pugliese AM (2018) The selective antagonism of adenosine A2B receptors reduces the synaptic failure and neuronal death induced by oxygen and glucose deprivation in rat CA1 hippocampus in vitro. Front Pharmacol 9:399. https://doi.org/10.3389/fphar.2018.00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goncalves FQ, Pires J, Pliassova A, Beleza R, Lemos C, Marques JM, Rodrigues RJ, Canas PM, Kofalvi A, Cunha RA, Rial D (2015) Adenosine A2b receptors control A1 receptor-mediated inhibition of synaptic transmission in the mouse hippocampus. Eur J Neurosci 41(7):878–888. https://doi.org/10.1111/ejn.12851

    Article  PubMed  Google Scholar 

  76. Moriyama K, Sitkovsky MV (2010) Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem 285(50):39271–39288. https://doi.org/10.1074/jbc.M109.098293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Borroto-Escuela DO, Fuxe K (2019) Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment. J Neural Transm (Vienna) 126(4):455–471. https://doi.org/10.1007/s00702-019-01969-2

    Article  CAS  PubMed  Google Scholar 

  78. Borroto-Escuela DO, Hinz S, Navarro G, Franco R, Muller CE, Fuxe K (2018) Understanding the role of adenosine A2AR heteroreceptor complexes in neurodegeneration and neuroinflammation. Front Neurosci 12:43. https://doi.org/10.3389/fnins.2018.00043

    Article  PubMed  PubMed Central  Google Scholar 

  79. van der Hoeven D, Wan TC, Auchampach JA (2008) Activation of the A(3) adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol Pharmacol 74(3):685–696. https://doi.org/10.1124/mol.108.048066

    Article  CAS  PubMed  Google Scholar 

  80. Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V (2006) Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 316(1):71–78. https://doi.org/10.1124/jpet.105.091868

    Article  CAS  PubMed  Google Scholar 

  81. Cohen S, Barer F, Bar-Yehuda S, AP IJ, Jacobson KA, Fishman P (2014) A(3) adenosine receptor allosteric modulator induces an anti-inflammatory effect: in vivo studies and molecular mechanism of action. Mediat Inflamm 2014:708746. https://doi.org/10.1155/2014/708746

    Article  CAS  Google Scholar 

  82. Bai H, Zhang Z, Liu L, Wang X, Song X, Gao L (2022) Activation of adenosine A3 receptor attenuates progression of osteoarthritis through inhibiting the NLRP3/caspase-1/GSDMD induced signalling. J Cell Mol Med 26(15):4230–4243. https://doi.org/10.1111/jcmm.17438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Farr SA, Cuzzocrea S, Esposito E, Campolo M, Niehoff ML, Doyle TM, Salvemini D (2020) Adenosine A3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J Neuroinflammation 17(1):339. https://doi.org/10.1186/s12974-020-02009-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84(8):1848–1855. https://doi.org/10.1002/jnr.21071

    Article  CAS  PubMed  Google Scholar 

  85. Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65(3):711–719. https://doi.org/10.1124/mol.65.3.711

    Article  CAS  PubMed  Google Scholar 

  86. Singh AK, Mahalingam R, Squillace S, Jacobson KA, Tosh DK, Dharmaraj S, Farr SA, Kavelaars A, Salvemini D, Heijnen CJ (2022) Targeting the A3 adenosine receptor to prevent and reverse chemotherapy-induced neurotoxicities in mice. Acta Neuropathol Commun 10(1):11. https://doi.org/10.1186/s40478-022-01315-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ferreira-Silva J, Aires ID, Boia R, Ambrosio AF, Santiago AR (2020) Activation of adenosine A3 receptor inhibits microglia reactivity elicited by elevated pressure. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197218

  88. Olde Heuvel F, Holl S, Chandrasekar A, Li Z, Wang Y, Rehman R, Forstner P, Sinske D, Palmer A, Wiesner D, Ludolph A, Huber-Lang M, Relja B, Wirth T, Roszer T, Baumann B, Boeckers T, Knoll B, Roselli F (2019) STAT6 mediates the effect of ethanol on neuroinflammatory response in TBI. Brain Behav Immun 81:228–246. https://doi.org/10.1016/j.bbi.2019.06.019

    Article  CAS  PubMed  Google Scholar 

  89. Racette BA, Gross A, Vouri SM, Camacho-Soto A, Willis AW, Searles Nielsen S (2018) Immunosuppressants and risk of Parkinson disease. Ann Clin Transl Neurol 5(7):870–875. https://doi.org/10.1002/acn3.580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Micheli L, Durante M, Lucarini E, Sgambellone S, Lucarini L, Di Cesare ML, Ghelardini C, Masini E (2021) The histamine H4 receptor participates in the anti-neuropathic effect of the adenosine A3 receptor agonist IB-MECA: role of CD4(+) T cells. Biomolecules 11(10). https://doi.org/10.3390/biom11101447

  91. Morato X, Garcia-Esparcia P, Argerich J, Llorens F, Zerr I, Paslawski W, Borras E, Sabido E, Petaja-Repo UE, Fernandez-Duenas V, Ferrer I, Svenningsson P, Ciruela F (2021) Ecto-GPR37: a potential biomarker for Parkinson’s disease. Translational neurodegeneration 10(1):8. https://doi.org/10.1186/s40035-021-00232-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeng Z, Su K, Kyaw H, Li Y (1997) A novel endothelin receptor type-B-like gene enriched in the brain. Biochem Biophys Res Commun 233(2):559–567. https://doi.org/10.1006/bbrc.1997.6408

    Article  CAS  PubMed  Google Scholar 

  93. Valdenaire O, Giller T, Breu V, Ardati A, Schweizer A, Richards JG (1998) A new family of orphan G protein-coupled receptors predominantly expressed in the brain. FEBS Lett 424(3):193–196. https://doi.org/10.1016/s0014-5793(98)00170-7

    Article  CAS  PubMed  Google Scholar 

  94. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105(7):891–902. https://doi.org/10.1016/s0092-8674(01)00407-x

    Article  CAS  PubMed  Google Scholar 

  95. Murakami T, Shoji M, Imai Y, Inoue H, Kawarabayashi T, Matsubara E, Harigaya Y, Sasaki A, Takahashi R, Abe K (2004) Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol 55(3):439–442. https://doi.org/10.1002/ana.20064

    Article  CAS  PubMed  Google Scholar 

  96. Lopes JP, Morato X, Souza C, Pinhal C, Machado NJ, Canas PM, Silva HB, Stagljar I, Gandia J, Fernandez-Duenas V, Lujan R, Cunha RA, Ciruela F (2015) The role of Parkinson’s disease-associated receptor GPR37 in the hippocampus: functional interplay with the adenosinergic system. J Neurochem 134(1):135–146. https://doi.org/10.1111/jnc.13109

    Article  CAS  PubMed  Google Scholar 

  97. Morato X, Lujan R, Lopez-Cano M, Gandia J, Stagljar I, Watanabe M, Cunha RA, Fernandez-Duenas V, Ciruela F (2017) The Parkinson’s disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Sci Rep 7(1):9452. https://doi.org/10.1038/s41598-017-10147-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Navarro G, Cordomi A, Brugarolas M, Moreno E, Aguinaga D, Perez-Benito L, Ferre S, Cortes A, Casado V, Mallol J, Canela EI, Lluis C, Pardo L, McCormick PJ, Franco R (2018) Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. BMC Biol 16(1):24. https://doi.org/10.1186/s12915-018-0491-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5(3):131–134. https://doi.org/10.1038/nchembio0309-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou X, Doorduin J, Elsinga PH, Dierckx R, de Vries EFJ, Casteels C (2017) Altered adenosine 2A and dopamine D2 receptor availability in the 6-hydroxydopamine-treated rats with and without levodopa-induced dyskinesia. Neuroimage 157:209–218. https://doi.org/10.1016/j.neuroimage.2017.05.066

    Article  CAS  PubMed  Google Scholar 

  101. Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortes A, Canela EI, Lopez-Gimenez JF, Milligan G, Lluis C, Cunha RA, Ferre S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26(7):2080–2087. https://doi.org/10.1523/JNEUROSCI.3574-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Surmeier DJ, Graves SM, Shen W (2014) Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr Opin Neurobiol 29:109–117. https://doi.org/10.1016/j.conb.2014.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gines S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferre S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 97(15):8606–8611. https://doi.org/10.1073/pnas.150241097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Floran B, Barajas C, Floran L, Erlij D, Aceves J (2002) Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience 115(3):743–751. https://doi.org/10.1016/s0306-4522(02)00479-7

    Article  CAS  PubMed  Google Scholar 

  105. Ferre S, Popoli P, Gimenez-Llort L, Finnman UB, Martinez E, Scotti de Carolis A, Fuxe K (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6(1):73–76. https://doi.org/10.1097/00001756-199412300-00020

    Article  CAS  PubMed  Google Scholar 

  106. Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R, Fuxe K (2005) Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 67(2):400–407. https://doi.org/10.1124/mol.104.003376

    Article  CAS  PubMed  Google Scholar 

  107. Rivera A, Penafiel A, Megias M, Agnati LF, Lopez-Tellez JF, Gago B, Gutierrez A, de la Calle A, Fuxe K (2008) Cellular localization and distribution of dopamine D(4) receptors in the rat cerebral cortex and their relationship with the cortical dopaminergic and noradrenergic nerve terminal networks. Neuroscience 155(3):997–1010. https://doi.org/10.1016/j.neuroscience.2008.05.060

    Article  CAS  PubMed  Google Scholar 

  108. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509(7500):310–317. https://doi.org/10.1038/nature13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Carmo M, Goncalves FQ, Canas PM, Oses JP, Fernandes FD, Duarte FV, Palmeira CM, Tome AR, Agostinho P, Andrade GM, Cunha RA (2019) Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A2A receptor over-activation in a rat model of Parkinson’s disease. Br J Pharmacol 176(18):3666–3680. https://doi.org/10.1111/bph.14771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thome AD, Atassi F, Wang J, Faridar A, Zhao W, Thonhoff JR, Beers DR, Lai EC, Appel SH (2021) Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson’s disease. NPJ Parkinsons Dis 7(1):41. https://doi.org/10.1038/s41531-021-00188-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Braun N, Sevigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H (2000) Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 12(12):4357–4366

    CAS  PubMed  Google Scholar 

  112. Farber K, Markworth S, Pannasch U, Nolte C, Prinz V, Kronenberg G, Gertz K, Endres M, Bechmann I, Enjyoji K, Robson SC, Kettenmann H (2008) The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration. Glia 56(3):331–341. https://doi.org/10.1002/glia.20606

    Article  PubMed  Google Scholar 

  113. Bulavina L, Szulzewsky F, Rocha A, Krabbe G, Robson SC, Matyash V, Kettenmann H (2013) NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signal 9(2):199–205. https://doi.org/10.1007/s11302-012-9339-y

    Article  CAS  PubMed  Google Scholar 

  114. Garcia-Esparcia P, Hernandez-Ortega K, Ansoleaga B, Carmona M, Ferrer I (2015) Purine metabolism gene deregulation in Parkinson’s disease. Neuropathol Appl Neurobiol 41(7):926–940. https://doi.org/10.1111/nan.12221

    Article  CAS  PubMed  Google Scholar 

  115. Acharya MM, Baulch JE, Lusardi TA, Allen BD, Chmielewski NN, Baddour AA, Limoli CL, Boison D (2016) Adenosine kinase inhibition protects against cranial radiation-induced cognitive dysfunction. Front Mol Neurosci 9:42. https://doi.org/10.3389/fnmol.2016.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sandau US, Yahya M, Bigej R, Friedman JL, Saleumvong B, Boison D (2019) Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia 60(4):615–625. https://doi.org/10.1111/epi.14674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmidt AP, Bohmer AE, Soares FA, Posso IP, Machado SB, Mendes FF, Portela LV, Souza DO (2010) Changes in purines concentration in the cerebrospinal fluid of patients experiencing pain: a case-control study. Neurosci Lett 474(2):69–73. https://doi.org/10.1016/j.neulet.2010.02.067

    Article  CAS  PubMed  Google Scholar 

  118. Ruhal P, Dhingra D (2018) Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology 26(5):1317–1329. https://doi.org/10.1007/s10787-018-0476-y

    Article  CAS  PubMed  Google Scholar 

  119. McFarland NR, Burdett T, Desjardins CA, Frosch MP, Schwarzschild MA (2013) Postmortem brain levels of urate and precursors in Parkinson’s disease and related disorders. Neurodegener Dis 12(4):189–198. https://doi.org/10.1159/000346370

    Article  CAS  PubMed  Google Scholar 

  120. El-Shamarka MEA, Kozman MR, Messiha BAS (2020) The protective effect of inosine against rotenone-induced Parkinson’s disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression. Naunyn Schmiedeberg's Arch Pharmacol 393(6):1041–1053. https://doi.org/10.1007/s00210-019-01804-1

    Article  CAS  Google Scholar 

  121. Cipriani S, Bakshi R, Schwarzschild MA (2014) Protection by inosine in a cellular model of Parkinson’s disease. Neuroscience 274:242–249. https://doi.org/10.1016/j.neuroscience.2014.05.038

    Article  CAS  PubMed  Google Scholar 

  122. Zhang N, Shu HY, Huang T, Zhang QL, Li D, Zhang GQ, Peng XY, Liu CF, Luo WF, Hu LF (2014) Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity. PLoS One 9(6):e100286. https://doi.org/10.1371/journal.pone.0100286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gong L, Zhang QL, Zhang N, Hua WY, Huang YX, Di PW, Huang T, Xu XS, Liu CF, Hu LF, Luo WF (2012) Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: linking to Akt/GSK3beta signaling pathway. J Neurochem 123(5):876–885. https://doi.org/10.1111/jnc.12038

    Article  CAS  PubMed  Google Scholar 

  124. Weisskopf MG, O'Reilly E, Chen H, Schwarzschild MA, Ascherio A (2007) Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 166(5):561–567. https://doi.org/10.1093/aje/kwm127

    Article  CAS  PubMed  Google Scholar 

  125. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM (2005) Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 58(5):797–800. https://doi.org/10.1002/ana.20663

    Article  CAS  PubMed  Google Scholar 

  126. Bhattacharyya S, Bakshi R, Logan R, Ascherio A, Macklin EA, Schwarzschild MA (2016) Oral inosine persistently elevates plasma antioxidant capacity in Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society 31(3):417–421. https://doi.org/10.1002/mds.26483

    Article  CAS  PubMed  Google Scholar 

  127. Iwaki H, Ando R, Miyaue N, Tada S, Tsujii T, Yabe H, Nishikawa N, Nagai M, Nomoto M (2017) One year safety and efficacy of inosine to increase the serum urate level for patients with Parkinson’s disease in Japan. J Neurol Sci 383:75–78. https://doi.org/10.1016/j.jns.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  128. Parkinson Study Group S-PDI, Schwarzschild MA, Ascherio A, Casaceli C, Curhan GC, Fitzgerald R, Kamp C, Lungu C, Macklin EA, Marek K, Mozaffarian D, Oakes D, Rudolph A, Shoulson I, Videnovic A, Scott B, Gauger L, Aldred J, Bixby M et al (2021) Effect of urate-elevating inosine on early Parkinson disease progression: the SURE-PD3 randomized clinical trial. JAMA 326(10):926–939. https://doi.org/10.1001/jama.2021.10207

    Article  CAS  Google Scholar 

  129. Kondo T, Mizuno Y, Japanese Istradefylline Study G (2015) A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol 38(2):41–46. https://doi.org/10.1097/WNF.0000000000000073

    Article  CAS  PubMed  Google Scholar 

  130. Ishibashi K, Miura Y, Wagatsuma K, Toyohara J, Ishiwata K, Ishii K (2018) Occupancy of adenosine A2A receptors by istradefylline in patients with Parkinson’s disease using (11)C-preladenant PET. Neuropharmacology 143:106–112. https://doi.org/10.1016/j.neuropharm.2018.09.036

    Article  CAS  PubMed  Google Scholar 

  131. Chen JF, Cunha RA (2020) The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal 16(2):167–174. https://doi.org/10.1007/s11302-020-09694-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52(3):276–284. https://doi.org/10.1002/ana.10277

    Article  PubMed  Google Scholar 

  133. Ishibashi K, Miura Y, Wagatsuma K, Toyohara J, Ishiwata K, Ishii K (2022) Adenosine A2A receptor occupancy by caffeine after coffee intake in Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society 37(4):853–857. https://doi.org/10.1002/mds.28897

    Article  CAS  PubMed  Google Scholar 

  134. Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. The Journal of neuroscience : the official journal of the Society for. Neuroscience 21(10):RC143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kardani J, Roy I (2015) Understanding caffeine’s role in attenuating the toxicity of alpha-synuclein aggregates: implications for risk of Parkinson’s disease. ACS Chem Neurosci 6(9):1613–1625. https://doi.org/10.1021/acschemneuro.5b00158

    Article  CAS  PubMed  Google Scholar 

  136. Bakshi R, Macklin EA, Hung AY, Hayes MT, Hyman BT, Wills AM, Gomperts SN, Growdon JH, Ascherio A, Scherzer CR, Schwarzschild MA (2020) Associations of lower caffeine intake and plasma urate levels with idiopathic Parkinson’s disease in the Harvard Biomarkers Study. J Parkinsons Dis 10(2):505–510. https://doi.org/10.3233/JPD-191882

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chuang YH, Lill CM, Lee PC, Hansen J, Lassen CF, Bertram L, Greene N, Sinsheimer JS, Ritz B (2016) Gene-environment interaction in Parkinson’s disease: coffee, ADORA2A, and CYP1A2. Neuroepidemiology 47(3-4):192–200. https://doi.org/10.1159/000450855

    Article  PubMed  Google Scholar 

  138. Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Muller CE, Salamone JD, Correa M (2013) Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A(2A)R KO mice. Behav Brain Res 247:217–226. https://doi.org/10.1016/j.bbr.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  139. Bishnoi M, Chopra K, Kulkarni SK (2007) Theophylline, adenosine receptor antagonist prevents behavioral, biochemical and neurochemical changes associated with an animal model of tardive dyskinesia. Pharmacol Rep 59(2):181–191

    CAS  PubMed  Google Scholar 

  140. Kulisevsky J, Barbanoj M, Gironell A, Antonijoan R, Casas M, Pascual-Sedano B (2002) A double-blind crossover, placebo-controlled study of the adenosine A2A antagonist theophylline in Parkinson’s disease. Clin Neuropharmacol 25(1):25–31. https://doi.org/10.1097/00002826-200201000-00005

    Article  CAS  PubMed  Google Scholar 

  141. Mally J, Stone TW (1994) The effect of theophylline on Parkinsonian symptoms. J Pharm Pharmacol 46(6):515–517. https://doi.org/10.1111/j.2042-7158.1994.tb03840.x

    Article  CAS  PubMed  Google Scholar 

  142. Pardo M, Paul NE, Collins-Praino LE, Salamone JD, Correa M (2020) The non-selective adenosine antagonist theophylline reverses the effects of dopamine antagonism on tremor, motor activity and effort-based decision-making. Pharmacol Biochem Behav 198:173035. https://doi.org/10.1016/j.pbb.2020.173035

    Article  CAS  PubMed  Google Scholar 

  143. Rohilla S, Bansal R, Chauhan P, Kachler S, Klotz KN (2021) A new series of 1,3-dimethylxanthine based adenosine A2A receptor antagonists as a non-dopaminergic treatment of Parkinson’s disease. Curr Drug Discov Technol 18(5):e26082020185360. https://doi.org/10.2174/1570163817666200827112252

    Article  CAS  PubMed  Google Scholar 

  144. Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S, Cohen-Williams ME, Higgins GA, Impagnatiello F, Nicolussi E, Parra LE, Foster C, Zhai Y, Neustadt BR, Stamford AW, Parker EM, Reggiani A, Hunter JC (2009) Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e ][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther 330(1):294–303. https://doi.org/10.1124/jpet.108.149617

    Article  CAS  PubMed  Google Scholar 

  145. Pinna A, Costa G, Serra M, Contu L, Morelli M (2021) Neuroinflammation and L-dopa-induced abnormal involuntary movements in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease are counteracted by combined administration of a 5-HT1A/1B receptor agonist and A2A receptor antagonist. Neuropharmacology 196:108693. https://doi.org/10.1016/j.neuropharm.2021.108693

    Article  CAS  PubMed  Google Scholar 

  146. Hattori N, Kikuchi M, Adachi N, Hewitt D, Huyck S, Saito T (2016) Adjunctive preladenant: a placebo-controlled, dose-finding study in Japanese patients with Parkinson’s disease. Parkinsonism Relat Disord 32:73–79. https://doi.org/10.1016/j.parkreldis.2016.08.020

    Article  PubMed  Google Scholar 

  147. Hauser RA, Stocchi F, Rascol O, Huyck SB, Capece R, Ho TW, Sklar P, Lines C, Michelson D, Hewitt D (2015) Preladenant as an adjunctive therapy with levodopa in Parkinson disease: two randomized clinical trials and lessons learned. JAMA Neurol 72(12):1491–1500. https://doi.org/10.1001/jamaneurol.2015.2268

    Article  PubMed  Google Scholar 

  148. Stocchi F, Rascol O, Hauser RA, Huyck S, Tzontcheva A, Capece R, Ho TW, Sklar P, Lines C, Michelson D, Hewitt DJ, Preladenant Early Parkinson Disease Study G (2017) Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology 88(23):2198–2206. https://doi.org/10.1212/WNL.0000000000004003

    Article  CAS  PubMed  Google Scholar 

  149. Wang J, He W, Kong F, Tian X, Wang P, Zhou X, Liu Y (2017) Ochracenes A-I, Humulane-derived Sesquiterpenoids from the Antarctic fungus Aspergillus ochraceopetaliformis. J Nat Prod 80(6):1725–1733. https://doi.org/10.1021/acs.jnatprod.6b00810

    Article  CAS  PubMed  Google Scholar 

  150. Fan Y, Zhou Y, Du Y, Wang Y, Fu P, Zhu W (2019) Circumdatin-aspyrone conjugates from the coral-associated Aspergillus ochraceus LCJ11-102. Marine drugs 17(7). https://doi.org/10.3390/md17070400

  151. He X, Chen F, Zhang Y, Gao Q, Guan Y, Wang J, Zhou J, Zhai F, Boison D, Luan G, Li T (2020) Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen’s encephalitis. Brain Pathol 30(2):246–260. https://doi.org/10.1111/bpa.12770

    Article  CAS  PubMed  Google Scholar 

  152. Hu L, Tian S, Wu R, Tong Z, Jiang W, Hu P, Xiao X, Zhang X, Zhou H, Tong Q, Lu Y, Huang Z, Chen Y, Zhang Y (2021) Identification of anti-Parkinson’s disease lead compounds from Aspergillus ochraceus targeting adenosin receptors A2A. ChemistryOpen 10(6):630–638. https://doi.org/10.1002/open.202100022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59(6):367–374. https://doi.org/10.1016/j.neuropharm.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  154. Lenda T, Ossowska K, Berghauzen-Maciejewska K, Matloka M, Pieczykolan J, Wieczorek M, Konieczny J (2021) Antiparkinsonian-like effects of CPL500036, a novel selective inhibitor of phosphodiesterase 10A, in the unilateral rat model of Parkinson’s disease. Eur J Pharmacol 910:174460. https://doi.org/10.1016/j.ejphar.2021.174460

    Article  CAS  PubMed  Google Scholar 

  155. Lee YY, Park JS, Leem YH, Park JE, Kim DY, Choi YH, Park EM, Kang JL, Kim HS (2019) The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson’s disease mouse models. J Neuroinflammation 16(1):246. https://doi.org/10.1186/s12974-019-1649-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Subair TI, Soremekun OS, Olotu FA, Soliman MES (2021) Therapeutic path to double knockout: investigating the selective dual-inhibitory mechanisms of adenosine receptors A1 and A2 by a novel methoxy-substituted benzofuran derivative in the treatment of Parkinson’s disease. Cell Biochem Biophys 79(1):25–36. https://doi.org/10.1007/s12013-020-00957-8

    Article  CAS  PubMed  Google Scholar 

  157. Kalash L, Val C, Azuaje J, Loza MI, Svensson F, Zoufir A, Mervin L, Ladds G, Brea J, Glen R, Sotelo E, Bender A (2017) Computer-aided design of multi-target ligands at A1R, A2AR and PDE10A, key proteins in neurodegenerative diseases. J Chem Thermodyn 9(1):67. https://doi.org/10.1186/s13321-017-0249-4

    Article  Google Scholar 

  158. Zhao J, Kumar M, Sharma J, Yuan Z (2021) Arbutin effectively ameliorates the symptoms of Parkinson’s disease: the role of adenosine receptors and cyclic adenosine monophosphate. Neural Regen Res 16(10):2030–2040. https://doi.org/10.4103/1673-5374.308102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Motawi TK, Sadik NAH, Hamed MA, Ali SA, Khalil WKB, Ahmed YR (2020) Potential therapeutic effects of antagonizing adenosine A2A receptor, curcumin and niacin in rotenone-induced Parkinson’s disease mice model. Mol Cell Biochem 465(1-2):89–102. https://doi.org/10.1007/s11010-019-03670-0

    Article  CAS  PubMed  Google Scholar 

  160. Rudich N, Dekel O, Sagi-Eisenberg R (2015) Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling. Mol Immunol 65(1):25–33. https://doi.org/10.1016/j.molimm.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  161. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, Huyck S, Wolski K (2011) Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 10(3):221–229. https://doi.org/10.1016/S1474-4422(11)70012-6

    Article  CAS  PubMed  Google Scholar 

  162. Altman RD, Lang AE, Postuma RB (2011) Caffeine in Parkinson’s disease: a pilot open-label, dose-escalation study. Movement disorders : official journal of the Movement Disorder Society 26(13):2427–2431. https://doi.org/10.1002/mds.23873

    Article  PubMed  Google Scholar 

  163. Knie B, Mitra MT, Logishetty K, Chaudhuri KR (2011) Excessive daytime sleepiness in patients with Parkinson’s disease. CNS Drugs 25(3):203–212. https://doi.org/10.2165/11539720-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  164. Postuma RB, Anang J, Pelletier A, Joseph L, Moscovich M, Grimes D, Furtado S, Munhoz RP, Appel-Cresswell S, Moro A, Borys A, Hobson D, Lang AE (2017) Caffeine as symptomatic treatment for Parkinson disease (Cafe-PD): a randomized trial. Neurology 89(17):1795–1803. https://doi.org/10.1212/WNL.0000000000004568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Stacy M, Silver D, Mendis T, Sutton J, Mori A, Chaikin P, Sussman NM (2008) A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 70(23):2233–2240. https://doi.org/10.1212/01.wnl.0000313834.22171.17

    Article  CAS  PubMed  Google Scholar 

  166. Hauser RA, Shulman LM, Trugman JM, Roberts JW, Mori A, Ballerini R, Sussman NM, Istradefylline USSG (2008) Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Movement disorders : official journal of the Movement Disorder Society 23(15):2177–2185. https://doi.org/10.1002/mds.22095

    Article  PubMed  Google Scholar 

  167. Hatano T, Kano O, Sengoku R, Yoritaka A, Suzuki K, Nishikawa N, Mukai Y, Nomura K, Yoshida N, Seki M, Matsukawa MK, Terashi H, Kimura K, Tashiro J, Hirano S, Murakami H, Joki H, Uchiyama T, Shimura H et al (2022) Evaluating the impact of adjunctive istradefylline on the cumulative dose of levodopa-containing medications in Parkinson’s disease: study protocol for the ISTRA ADJUST PD randomized, controlled study. BMC Neurol 22(1):71. https://doi.org/10.1186/s12883-022-02600-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Takahashi M, Shimokawa T, Koh J, Takeshima T, Yamashita H, Kajimoto Y, Mori A, Ito H (2022) Efficacy and safety of istradefylline in patients with Parkinson’s disease presenting with postural abnormalities: results from a multicenter, prospective, and open-label exploratory study in Japan. J Neurol Sci 432:120078. https://doi.org/10.1016/j.jns.2021.120078

    Article  CAS  PubMed  Google Scholar 

  169. Hauser RA, Olanow CW, Kieburtz KD, Pourcher E, Docu-Axelerad A, Lew M, Kozyolkin O, Neale A, Resburg C, Meya U, Kenney C, Bandak S (2014) Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol 13(8):767–776. https://doi.org/10.1016/S1474-4422(14)70148-6

    Article  CAS  PubMed  Google Scholar 

  170. Parkinson Study Group S-PDI, Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, Hare JM, Hooper DC, Kieburtz KD, Macklin EA, Oakes D, Rudolph A, Shoulson I, Tennis MK, Espay AJ, Gartner M, Hung A, Bwala G, Lenehan R et al (2014) Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol 71(2):141–150. https://doi.org/10.1001/jamaneurol.2013.5528

    Article  Google Scholar 

Download references

Funding

The project was supported by the Department of Health of Hebei Province (Grant No.20190505). The project was supported by the S&T Program of Hebei (No. 22377798D).

Author information

Authors and Affiliations

Authors

Contributions

YZ and XL prepared the manuscript and designed the figures. GF reviewed the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Guofeng Yang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, X. & Yang, G. Adenosinergic Pathway in Parkinson’s Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 60, 3054–3070 (2023). https://doi.org/10.1007/s12035-023-03257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03257-3

Keywords

Navigation