Skip to main content

Advertisement

Log in

MiR-146a-5p Contributes to Microglial Polarization Transitions Associated With AGEs

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

M1/M2 polarization transitions of microglial phenotypes determine the states of neuroinflammation, which is critical in the pathophysiology of diabetic encephalopathy. This study aims to investigate the effects of advanced glycation end products (AGEs) on the microglial polarization state, the role of miR-146a-5p in the regulation of microglial polarization, and the underlying signaling pathways. BV-2 cells were incubated with N-ε-carboxymethyl lysine (CML), one kind of Advanced Glycation End Products (AGEs), to induce polarization. CD11b and iNOS and CD206 and Arg-1 were used to evaluate M1 and M2 microglia, respectively. The mRNA and protein expression levels of miR-146a-5p, transcription factor NF-κB, and inflammasome NLRP3 were measured. High and low expression of miR-146a-5p in the BV-2 cell line was generated by lentivirus transfection technology. RAGE, TLR-4, and NF-κB antagonists were applied to evaluate the underlying signaling pathways. Compared with the control group, CML upregulated the M1 phenotype and downregulated the M2 phenotype. These effects were reversed by overexpression of miR-146a. Furthermore, the expression of inflammasome NLRP3 and NF-κB was upregulated in the CML group and was reduced after miR-146a overexpression. And then overexpression of miR-146a effects was reversed by inhibition miR-146a expression. An NF-κB antagonist (PDTC), a RAGE antagonist (FPS-ZMI), and a TLR-4 antagonist (TLI-095) all reversed the polarization state induced by CML. In summary, CML induced polarization transitions to M1 phenotype and promoted inflammasome NLRP3 expression in BV-2 cells. The RAGE or TLR-4/miR-146a/NLRP3/NF-кB pathway might participate in the regulation of CML-induced BV-2 polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All relevant data is contained within the article. Further inquiries can be directed to the corresponding author.

Abbreviations

APS:

Ammonium persulfate

BSA:

Albumin from bovine serum

BCA:

Bicinchoninic acid

BV-2:

BV-2 microglia

CML:

Nε-carboxymethyl-lysine

CAS:

Chinese Academy of Sciences

CDNA:

Complementary DNA

DEPC:

Diethyl pyrocarbonate

DMSO:

Dimethyl sulfoxide

ECL:

Enhanced chemiluminescence

FBS:

Fetal bovine serum

GFP:

Green fluorescence protein

MOI:

Multiplicity of infection

PCR:

Polymerase chain reaction

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered solution

PMSF:

Phenylmethanesulfonyl fluoride

PVDF:

Polyvinylidene fluoride

RPM:

Revolutions per minute

RPMI:

RPMI Medium 1640 basic (1 ×)

RAGE:

Receptors of advanced glycation end products

SDS:

Sodium dodecyl sulfate

TBS:

Tris-buffered saline

TEMED:

Tetraaminoethylenediamine

TLR-4:

Toll-like receptor-4

References

  1. Cukierman T, Gerstein HC, Williamson JD (2005) Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. Diabetologia 48:2460–2469

    Article  CAS  PubMed  Google Scholar 

  2. Lila C, Delia R, Daniela D et al (2017) Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases [J]. Mediators Inflamm 2017:5048616

    Google Scholar 

  3. Uesugi N, Sakata N, Nagai R, Jono T, Horiuchi S, Takebayashi S (2000) Glycoxidative modification of AA amyloid deposits in renal tissue. Nephrol Dial Transplant 15:355–365

    Article  CAS  PubMed  Google Scholar 

  4. Bar KJ, Franke S, Wenda B, Muller S, Kientsch-Engel R, Stein G et al (2003) Pentosidine and n(epsilon)-(carboxymethyl)-lysine in Alzheimer’s disease and vascular dementia. Neurobiol Aging 24:333–338

    Article  CAS  PubMed  Google Scholar 

  5. Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  CAS  PubMed  Google Scholar 

  6. Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14:591–604

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shi S, Yin HJ, Li J, Wang L, Wang WP, Wang XL (2020) Studies of pathology and pharmacology of diabetic encephalopathy with KK-Ay mouse model. CNS Neurosci Ther 26:332–342

    Article  CAS  PubMed  Google Scholar 

  8. Su XQ, Wang XY, Gong FT, Feng M, Bai JJ, Zhang RR et al (2020) Oral treatment with glycyrrhizin inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization after traumatic spinal cord injury. Brain Res Bull 158:1–8

    Article  CAS  PubMed  Google Scholar 

  9. Ward R, Li W, Abdul Y, Jackson L, Dong G, Jamil S et al (2019) NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res 142:237–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhai Y, Meng X, Ye T, Xie W, Sun G, Sun X (2018) Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules 23:522

  11. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  CAS  PubMed  Google Scholar 

  12. Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A et al (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinsons Dis 3:30

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T et al (2015) NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol 18:pyv006

  14. Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X (2016) NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun 56:175–186

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe M, Toyomura T, Mori S (2022) Regulation of inflammatory response based on interaction among AGEs, DAMPs, and/or cytokines [J]. Nihon Yakurigaku Zasshi 157:429–433

    Article  CAS  PubMed  Google Scholar 

  16. Niwa T (2001) Dialysis-related amyloidosis: pathogenesis focusing on age modification. Semin Dial 14:123–126

    Article  CAS  PubMed  Google Scholar 

  17. Cho HJ, Xie C, Cai H (2018) Age-induced neuronal cell death is enhanced in G2019S LRRK2 mutation with increased RAGE expression. Transl Neurodegener 7:1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dukic-Stefanovic S, Gasic-Milenkovic J, Deuther-Conrad W, Munch G (2003) Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (AGEs). J Neurochem 87:44–55

    Article  CAS  PubMed  Google Scholar 

  19. Lue LF, Kuo YM, Beach T, Walker DG (2010) Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 41:115–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheray M, Joseph B (2018) Epigenetics control microglia plasticity. Front Cell Neurosci 12:243

    Article  PubMed  PubMed Central  Google Scholar 

  21. Datta M, Staszewski O, Raschi E, Frosch M, Hagemeyer N, Tay TL et al (2018) Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity 48:514–529

    Article  CAS  PubMed  Google Scholar 

  22. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    Article  CAS  PubMed  Google Scholar 

  23. Dai Y, Wang S, Chang S, Ren D, Shali S, Li C et al (2020) M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-kappaB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol 142:65–79

    Article  CAS  PubMed  Google Scholar 

  24. Hu L, Zhang H, Wang B, Ao Q, He Z (2020) MicroRNA-152 attenuates neuroinflammation in intracerebral hemorrhage by inhibiting thioredoxin interacting protein (TXNIP)-mediated NLRP3 inflammasome activation. Int Immunopharmacol 80:106141

    Article  CAS  PubMed  Google Scholar 

  25. Devaraj S, Tobias P, Jialal I (2011) Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. Cytokine 55:441–445

    Article  CAS  PubMed  Google Scholar 

  26. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194

    Article  CAS  PubMed  Google Scholar 

  27. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  28. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  29. Hayden MR (2019) Type 2 diabetes mellitus increases the risk of late-onset Alzheimer’s disease: ultrastructural remodeling of the neurovascular unit and diabetic gliopathy. Brain Sci 9:262

  30. Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z (2016) The effect of diabetes mellitus on apoptosis in hippocampus: cellular and molecular aspects. Int J Prev Med 7:57

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hwang IK, Choi JH, Nam SM, Park OK, Yoo DY, Kim W et al (2014) Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats. Neurol Res 36:824–832

    Article  CAS  PubMed  Google Scholar 

  32. Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M (2016) High-fructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiol Dis 89:65–75

    Article  CAS  PubMed  Google Scholar 

  33. Gao Y, Bielohuby M, Fleming T, Grabner GF, Foppen E, Bernhard W et al (2017) Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab 6:897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volny O, Kasickova L, Coufalova D, Cimflova P, Novak J (2015) MicroRNAs in cerebrovascular disease. Adv Exp Med Biol 888:155–195

    Article  PubMed  Google Scholar 

  35. Sadlon A, Takousis P, Alexopoulos P, Evangelou E, Prokopenko I, Perneczky R (2019) MiRNAs identify shared pathways in Alzheimer’s and Parkinson’s diseases. Trends Mol Med 25:662–672

    Article  CAS  PubMed  Google Scholar 

  36. Ma F, Zhang X, Yin KJ (2020) MicroRNAs in central nervous system diseases: a prospective role in regulating blood-brain barrier integrity. Exp Neurol 323:113094

    Article  CAS  PubMed  Google Scholar 

  37. Juzwik CA, Drake SS, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A et al (2019) MicroRNA dysregulation in neurodegenerative diseases: a systematic review. Prog Neurobiol 182:101664

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Chen XP, Li YJ (2010) MicroRNA-146a and human disease. Scand J Immunol 71:227–231

    Article  CAS  PubMed  Google Scholar 

  39. Luo Q, Feng Y, Xie Y, Shao Y, Wu M, Deng X et al (2019) Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 17:188–197

    Article  CAS  PubMed  Google Scholar 

  40. Liu XS, Fan B, Szalad A, Jia L, Wang L, Wang X et al (2017) MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes 66:3111–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Ma WQ, Zhu Y, Han XQ, Liu N (2018) Exosomes derived from mesenchymal stromal cells pretreated with advanced glycation end product-bovine serum albumin inhibit calcification of vascular smooth muscle cells. Front Endocrinol (Lausanne) 9:524

    Article  PubMed  Google Scholar 

  42. Kubota K, Nakano M, Kobayashi E, Mizue Y, Chikenji T, Otani M et al (2018) An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells. PLoS ONE 13:e0204252

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li X, Ji Z, Li S, Sun YN, Liu J, Liu Y et al (2015) MiR-146a-5p antagonized AGEs- and p.G-LPS-induced ABCA1 and ABCG1 dysregulation in macrophages via IRAK-1 downregulation. Inflammation 38:1761–1768

    Article  CAS  PubMed  Google Scholar 

  44. Ghosh S, Castillo E, Frias ES, Swanson RA (2018) Bioenergetic regulation of microglia. Glia 66(6):1200–1212. https://doi.org/10.1002/glia.23271

    Article  PubMed  Google Scholar 

  45. Sutterwala FS, Haasken S, Cassel SL (2014) Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319:82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56:739–744

    Article  CAS  PubMed  Google Scholar 

  47. Shirasuna K, Seno K, Ohtsu A, Shiratsuki S, Ohkuchi A, Suzuki H et al (2016) AGEs and HMGB1 increase inflammatory cytokine production from human placental cells, resulting in an enhancement of monocyte migration. Am J Reprod Immunol 75:557–568

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe M, Toyomura T, Wake H, Liu K, Teshigawara K, Takahashi H et al (2020) Differential contribution of possible pattern-recognition receptors to advanced glycation end product-induced cellular responses in macrophage-like RAW264.7 cells. Biotechnol Appl Biochem 67:265–272

    Article  CAS  PubMed  Google Scholar 

  49. Cao X, Xia Y, Zeng M, Wang W, He Y, Liu J (2019) Caffeic acid inhibits the formation of advanced glycation end products (AGEs) and mitigates the ages-induced oxidative stress and inflammation reaction in human umbilical vein endothelial cells (HUVECs). Chem Biodivers 16:e1900174

    Article  CAS  PubMed  Google Scholar 

  50. Yeh WJ, Yang HY, Pai MH, Wu CH, Chen JR (2017) Long-term administration of advanced glycation end-product stimulates the activation of NLRP3 inflammasome and sparking the development of renal injury. J Nutr Biochem 39:68–76

    Article  CAS  PubMed  Google Scholar 

  51. Hong J, Li G, Zhang Q, Ritter J, Li W, Li PL (2019) D-ribose induces podocyte NLRP3 inflammasome activation and glomerular injury via AGEs/RAGE pathway. Front Cell Dev Biol 7:259

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dai J, Chen H, Chai Y (2019) Advanced glycation end products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive oxygen species (ROS) signaling pathway. Med Sci Monit 25:7499–7508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yi X, Zhang L, Lu W, Tan X, Yue J, Wang P et al (2019) The effect of NLRP inflammasome on the regulation of AGEs-induced inflammatory response in human periodontal ligament cells. J Periodontal Res 54:681–689

    Article  CAS  PubMed  Google Scholar 

  54. Kong X, Lu AL, Yao XM, Hua Q, Li XY, Qin L et al (2017) Activation of NLRP3 inflammasome by advanced glycation end products promotes pancreatic islet damage. Oxid Med Cell Longev 2017:9692546

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jia HL, Lu CQ, Wang J, Ren DD, Chen YQ (2019) The effect of interference of NLRP3 with shRNA on ages-induced inflammatory response in myocardial cell. Sichuan Da Xue Xue Bao Yi Xue Ban 50:7–12

    PubMed  Google Scholar 

  56. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122:1377–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this work was supported by the National Natural Science Foundation of China (NSFC No.82200871,82270873), Natural Science Foundation of Fujian Province (2020J01221, 2020J01226), Medical Innovation Project of Fujian Province (2020CXA044), Science Fund for Distinguished Young Scholars of Fujian Province (2020GGA057), and the Postdoctoral Start-up fund of the Second Affiliated Hospital of Fujian Medical University (2020BSH02).

Author information

Authors and Affiliations

Authors

Contributions

Yinqiong Huang and Xiaoyun Lin contributed equally to this manuscript. Yinqiong Huang, Xiaoyun Lin, and Xiahong Lin conceptualized and designed these studies, performed them, and wrote the manuscript. All authors contributed to manuscript revision and read and approved the submitted version.

Corresponding authors

Correspondence to Yinqiong Huang or Xiahong Lin.

Ethics declarations

Ethics Approval and Consent to Participate

This study is only cell culture research. No ethics approval is required in this study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lin, X. & Lin, X. MiR-146a-5p Contributes to Microglial Polarization Transitions Associated With AGEs. Mol Neurobiol 60, 3020–3033 (2023). https://doi.org/10.1007/s12035-023-03252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03252-8

Keywords

Navigation