Skip to main content
Log in

Stress-Activated Protein Kinase JNK Modulates Depression-like Behaviors in Mice

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stress is considered as a major cause of depression. C-Jun N-terminal kinase (JNK) is a member of the stress-induced mitogen activated protein (MAP) kinase family which is often activated through phosphorylation. Clinical studies and animal experiments have found that abnormal phosphorylation/activation of JNK exists in the occurrence of various psychiatric diseases. Recently, several studies linked JNK kinase activity to depression. However, whether excessive activation of JNK activity is directly responsible for the occurrence of depression and the underlying mechanisms remain unclear. Here, we constructed a conditional transgenic mouse which is specifically expressing MKK7-JNK1 (CAJNK1) in the central nervous system. CAJNK1 mice showed activation of JNK and lead to depression-like behavior in mice. Transcriptome analysis indicates reduced expression of synaptic-associated genes in CAJNK1 mice brains. Consistently, we found abnormal dendritic spine development and PSD95 downregulation in CAJNK1 hippocampal neurons. Our studies provide compelling evidence that activation of JNK as an intrinsic factor leading to depression-like behavior in mice provides direct clues for targeting the JNK activity as a potential therapeutic strategy for depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tafet GE, Nemeroff CB (2016) The links between stress and depression: psychoneuroendocrinological, genetic, and environmental interactions. J Neuropsychiatry Clin Neurosci 28(2):77–88. https://doi.org/10.1176/appi.neuropsych.15030053

    Article  PubMed  Google Scholar 

  2. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147. https://doi.org/10.1007/7854_2010_108

    Article  PubMed  PubMed Central  Google Scholar 

  3. Park C, Rosenblat JD, Brietzke E, Pan Z, Lee Y, Cao B et al (2019) Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev 102:139–152. https://doi.org/10.1016/j.neubiorev.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Deussing JM, Jakovcevski M (2017) Histone modifications in major depressive disorder and related rodent models. Adv Exp Med Biol 978:169–183. https://doi.org/10.1007/978-3-319-53889-1_9

    Article  CAS  PubMed  Google Scholar 

  5. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83. https://doi.org/10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabapathy K (2012) Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106:145–169. https://doi.org/10.1016/B978-0-12-396456-4.00013-4

    Article  CAS  PubMed  Google Scholar 

  7. Busquets O, Parcerisas A, Verdaguer E, Ettcheto M, Camins A, Beas-Zarate C et al (2020) c-Jun N-terminal kinases in Alzheimer’s disease: a possible target for the modulation of the earliest alterations. J Alzheimers Dis. https://doi.org/10.3233/jad-201053

    Article  Google Scholar 

  8. Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W et al (2017) The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast 2017:6871089. https://doi.org/10.1155/2017/6871089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roseman L, Demetriou L, Wall MB, Nutt DJ, Carhart-Harris RL (2018) Increased amygdala responses to emotional faces after psilocybin for treatment-resistant depression. Neuropharmacology 142:263–269. https://doi.org/10.1016/j.neuropharm.2017.12.041

    Article  CAS  PubMed  Google Scholar 

  10. Tunc-Ozcan E, Peng CY, Zhu Y, Dunlop SR, Contractor A, Kessler JA (2019) Activating newborn neurons suppresses depression and anxiety-like behaviors. Nat Commun 10(1):3768. https://doi.org/10.1038/s41467-019-11641-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berridge MJ (2017) Vitamin D and depression: cellular and regulatory mechanisms. Pharmacol Rev 69(2):80–92. https://doi.org/10.1124/pr.116.013227

    Article  CAS  PubMed  Google Scholar 

  12. Mohammad H, Marchisella F, Ortega-Martinez S, Hollos P, Eerola K, Komulainen E et al (2018) JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry 23(2):362–374. https://doi.org/10.1038/mp.2016.203

    Article  CAS  PubMed  Google Scholar 

  13. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N et al (2019) Lower synaptic density is associated with depression severity and network alterations. Nat Commun 10(1):1529. https://doi.org/10.1038/s41467-019-09562-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu D, Zhang F, Wang Y, Sun Y, Xu Z (2014) Microcephaly-associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep 6(1):104–116. https://doi.org/10.1016/j.celrep.2013.12.016

    Article  CAS  PubMed  Google Scholar 

  15. Xu D, Yao M, Wang Y, Yuan L, Hoeck JD, Yu J et al (2018) MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biol 16(12):e2006613. https://doi.org/10.1371/journal.pbio.2006613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang J, Lin W, Tang M, Zhao Y, Zhang K, Wang X et al (2020) Inhibition of JNK ameliorates depressive-like behaviors and reduces the activation of pro-inflammatory cytokines and the phosphorylation of glucocorticoid receptors at serine 246 induced by neuroinflammation. Psychoneuroendocrinology 113:104580. https://doi.org/10.1016/j.psyneuen.2019.104580

    Article  CAS  PubMed  Google Scholar 

  17. Xu D, Yao M, Wang Y, Yuan L, Hoeck JD, Yu J et al (2018) MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biol 16(12):e2006613-e. https://doi.org/10.1371/journal.pbio.2006613

    Article  CAS  Google Scholar 

  18. Chen T, Chen X, Zhang S, Zhu J, Tang B, Wang A et al (2021) The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinforma 19(4):578–583. https://doi.org/10.1016/j.gpb.2021.08.001

    Article  Google Scholar 

  19. Members C-N and Partners (2022) Database resources of the national genomics data center, China National Center for Bioinformation in 2022. Nucleic Acids Res 50(D1):D27–D38. https://doi.org/10.1093/nar/gkab951

    Article  CAS  Google Scholar 

  20. Zheng C, Xiang J, Hunter T, Lin A (1999) The JNKK2-JNK1 fusion protein acts as a constitutively active c-Jun kinase that stimulates c-Jun transcription activity. J Biol Chem 274(41):28966–28971. https://doi.org/10.1074/jbc.274.41.28966

    Article  CAS  PubMed  Google Scholar 

  21. Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F et al (1995) Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268(5208):286–290. https://doi.org/10.1126/science.7716521

    Article  CAS  PubMed  Google Scholar 

  22. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27(48):6245–6251. https://doi.org/10.1038/onc.2008.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37(7):773–782. https://doi.org/10.1038/s41587-019-0114-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pang H, Jiang Y, Li J, Wang Y, Nie M, Xiao N et al (2021) Aberrant NAD(+) metabolism underlies Zika virus-induced microcephaly. Nat Metab 3(8):1109–1124. https://doi.org/10.1038/s42255-021-00437-0

    Article  CAS  PubMed  Google Scholar 

  25. Su YA, Li JT, Dai WJ, Liao XM, Dong LC, Lu TL et al (2016) Genetic variation in the tryptophan hydroxylase 2 gene moderates depressive symptom trajectories and remission over 8 weeks of escitalopram treatment. Int Clin Psychopharmacol 31(3):127–133. https://doi.org/10.1097/YIC.0000000000000115

    Article  PubMed  Google Scholar 

  26. Lee KM, Coelho MA, Sern KR, Szumlinski KK (2018) Homer2 within the central nucleus of the amygdala modulates withdrawal-induced anxiety in a mouse model of binge-drinking. Neuropharmacology 128:448–459. https://doi.org/10.1016/j.neuropharm.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  27. Kim R, Kim J, Chung C, Ha S, Lee S, Lee E et al (2018) Cell-type-specific shank2 deletion in mice leads to differential synaptic and behavioral phenotypes. J Neurosci 38(17):4076–4092. https://doi.org/10.1523/JNEUROSCI.2684-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luciano M, Houlihan LM, Harris SE, Gow AJ, Hayward C, Starr JM et al (2010) Association of existing and new candidate genes for anxiety, depression and personality traits in older people. Behav Genet 40(4):518–532. https://doi.org/10.1007/s10519-009-9326-4

    Article  PubMed  Google Scholar 

  29. Jenkins S, Harker A, Gibb R (2022) Maternal stress prior to conception impairs memory and decreases right dorsal hippocampal volume and basilar spine density in the prefrontal cortex of adult male offspring. Behav Brain Res 416:113543. https://doi.org/10.1016/j.bbr.2021.113543

    Article  PubMed  Google Scholar 

  30. Chen Y, Dube CM, Rice CJ, Baram TZ (2008) Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci 28(11):2903–2911. https://doi.org/10.1523/JNEUROSCI.0225-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M (2007) Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56(3):488–502. https://doi.org/10.1016/j.neuron.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  32. Vaidya VA, Duman RS (2001) Depresssion–emerging insights from neurobiology. Br Med Bull 57:61–79. https://doi.org/10.1093/bmb/57.1.61

    Article  CAS  PubMed  Google Scholar 

  33. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P et al (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 18(9):1413–1417. https://doi.org/10.1038/nm.2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72. https://doi.org/10.1126/science.1222939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22(4):667–676. https://doi.org/10.1016/s0896-6273(00)80727-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Axel Behrens for conditional CAJNK1 mice and Dr. Yi Zuo for Thy1-GFPm transgenic mice. We also want to thank Shuyuan Wang from Public Technology Service Center of Fujian Medical University for the technical assistance.

Funding

This work was supported by the National Science Foundation of China (31970920 and 81901168), National Science Foundation of Hunan Province under Grant 2022JJ4689, and the Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University (CXZX2020089A).

Author information

Authors and Affiliations

Authors

Contributions

DX conceived and designed the project. XK Z performed most of the experiments and data analysis. WX Y performed RNAseq and dendritic spine analysis. YQ Z and JR Y help with tissue staining and data analysis. DX and XK Z wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhiheng Xu or Dan Xu.

Ethics declarations

Ethics approval

All animal procedures used in this study were performed according to protocols approved by the Institutional Animal Care and Use Committee of Fujian Medical University (protocol number: FJMUIACUC 2021-J-0164).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yi, W., Zhi, Y. et al. Stress-Activated Protein Kinase JNK Modulates Depression-like Behaviors in Mice. Mol Neurobiol 60, 2367–2378 (2023). https://doi.org/10.1007/s12035-023-03209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03209-x

Keywords

Navigation