Skip to main content
Log in

An Updated Review of Mitochondrial Transplantation as a Potential Therapeutic Strategy Against Cerebral Ischemia and Cerebral Ischemia/Reperfusion Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Regardless of the progress made in the pathogenesis of ischemic stroke, it remains a leading cause of adult disability and death. To date, the most effective treatment for ischemic stroke is the timely recanalization of the occluded artery. However, the short time window and reperfusion injury have greatly limited its application and efficacy. Mitochondrial dysfunction and ATP depletion have become regarded as being hallmarks of neuropathophysiology following ischemic stroke. Mitochondrial transplantation is a novel potential therapeutic intervention for ischemic stroke that has sparked widespread concern during the past few years. This review summarizes and discusses the effects of mitochondrial transplantation in in vitro and in vivo ischemic stroke models. In addition, pharmacological interventions promoting mitochondrial transplantation are reviewed and discussed. We also discuss the potential challenges to the clinical application of mitochondrial transplantation in the treatment of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Nian K, Harding IC, Herman IM, Ebong EE (2020) Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction. Front Physiol 11:605398. https://doi.org/10.3389/fphys.2020.605398

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ding Q, Liu S, Yao Y, Liu H, Cai T, Han L (2022) Global, regional, and national burden of ischemic stroke, 1990–2019. Neurology 98(3):e279–e290. https://doi.org/10.1212/wnl.0000000000013115

    Article  PubMed  Google Scholar 

  3. Global Burden of Disease Study 2013 Collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995):743–800. https://doi.org/10.1016/S0140-6736(15)60692-4

  4. Soriano-Tárraga C, Giralt-Steinhauer E, Mola-Caminal M, Vivanco-Hidalgo RM, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Sayols-Baixeras S, Elosua R, Roquer J, Jiménez-Conde J (2016) Ischemic stroke patients are biologically older than their chronological age. Aging (Albany NY) 8(11):2655–2666. https://doi.org/10.18632/aging.101028

    Article  PubMed  Google Scholar 

  5. Terni E, Giannini N, Brondi M, Montano V, Bonuccelli U, Mancuso M (2015) Genetics of ischaemic stroke in young adults. BBA Clin 3:96–106. https://doi.org/10.1016/j.bbacli.2014.12.004

    Article  PubMed  Google Scholar 

  6. Feske SK (2021) Ischemic Stroke. Am J Med 134(12):1457–1464. https://doi.org/10.1016/j.amjmed.2021.07.027

    Article  PubMed  Google Scholar 

  7. Barthels D (1866) Das H (2020) Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis 4:165260. https://doi.org/10.1016/j.bbadis.2018.09.012

    Article  CAS  Google Scholar 

  8. Gauberti M, Lapergue B, Martinez de Lizarrondo S, Vivien D, Richard S, Bracard S, Piotin M, Gory B (2018) Ischemia-reperfusion injury after endovascular thrombectomy for ischemic stroke. Stroke 49(12):3071–3074. https://doi.org/10.1161/strokeaha.118.022015

    Article  PubMed  Google Scholar 

  9. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. https://doi.org/10.1016/b978-0-12-394309-5.00006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. The New England J Med 359(13):1317–1329. https://doi.org/10.1056/NEJMoa0804656

    Article  CAS  Google Scholar 

  11. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. https://doi.org/10.1016/j.cmet.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  12. Alle H, Roth A, Geiger JR (2009) Energy-efficient action potentials in hippocampal mossy fibers. Science (New York, NY) 325(5946):1405–1408. https://doi.org/10.1126/science.1174331

    Article  CAS  Google Scholar 

  13. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science (New York, NY) 305(5684):626–629. https://doi.org/10.1126/science.1099320

    Article  CAS  Google Scholar 

  14. Jordan J, de Groot PW, Galindo MF (2011) Mitochondria: the headquarters in ischemia-induced neuronal death. Cent Nerv Syst Agents Med Chem 11(2):98–106. https://doi.org/10.2174/187152411796011358

    Article  CAS  PubMed  Google Scholar 

  15. Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R (2020) Pathophysiology of ischemic stroke: role of oxidative stress. Curr Pharm Des 26(34):4246–4260. https://doi.org/10.2174/1381612826666200708133912

    Article  CAS  PubMed  Google Scholar 

  16. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  17. Yang JL, Mukda S, Chen SD (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275. https://doi.org/10.1016/j.redox.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh A, Faccenda D, Campanella M (2021) Pharmacological advances in mitochondrial therapy EBioMedicine 65:103244. https://doi.org/10.1016/j.ebiom.2021.103244

    Article  CAS  PubMed  Google Scholar 

  19. Garone C, Viscomi C (2018) Towards a therapy for mitochondrial disease: an update. Biochem Soc Trans 46(5):1247–1261. https://doi.org/10.1042/bst20180134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Russell OM, Gorman GS, Lightowlers RN, Turnbull DM (2020) Mitochondrial diseases: hope for the future. Cell 181(1):168–188. https://doi.org/10.1016/j.cell.2020.02.051

    Article  CAS  PubMed  Google Scholar 

  21. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCully JD, Levitsky S, Del Nido PJ, Cowan DB (2016) Mitochondrial transplantation for therapeutic use. Clin Transl Med 5(1):16. https://doi.org/10.1186/s40169-016-0095-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park A, Oh M, Lee SJ, Oh K-J, Lee E-W, Lee SC, Bae K-H, Han BS, Kim WK (2021) Mitochondrial transplantation as a novel therapeutic strategy for mitochondrial diseases. Int J Mol Sci 22(9):4793. https://doi.org/10.3390/ijms22094793

  24. Liu D, Gao Y, Liu J, Huang Y, Yin J, Feng Y, Shi L, Meloni BP, Zhang C, Zheng M, Gao J (2021) Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther 6(1):65. https://doi.org/10.1038/s41392-020-00440-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang T, Zhang T, Gao J (2022) Targeted mitochondrial delivery: a therapeutic new era for disease treatment. J Control Release 343:89–106. https://doi.org/10.1016/j.jconrel.2022.01.025

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Huang J, Hu Y, Khoshnam SE, Sarkaki A (2020) Mitochondrial transfer as a therapeutic strategy against ischemic stroke. Transl Stroke Res 11(6):1214–1228. https://doi.org/10.1007/s12975-020-00828-7

    Article  PubMed  Google Scholar 

  27. Liu F, Lu J, Manaenko A, Tang J, Hu Q (2018) Mitochondria in ischemic stroke: new insight and implications. Aging Dis 9(5):924–937. https://doi.org/10.14336/ad.2017.1126

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin L, Wang X, Yu Z (2016) Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem Pharmacol (Los Angel) 5(4):213–228. https://doi.org/10.4172/2167-0501.1000213

    Article  CAS  Google Scholar 

  29. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord: Drug Targets 12(5):698–714. https://doi.org/10.2174/1871527311312050015

    Article  CAS  PubMed  Google Scholar 

  30. Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4(6):461–470. https://doi.org/10.1111/j.1747-4949.2009.00387.x

    Article  CAS  PubMed  Google Scholar 

  31. Jelinek M, Jurajda M, Duris K (2021) Oxidative stress in the brain: basic concepts and treatment strategies in stroke. Antioxidants (Basel) 10(12):1886. https://doi.org/10.3390/antiox10121886

  32. Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C (2007) Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 27(27):7083–7093. https://doi.org/10.1523/jneurosci.1645-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol 19(2):105–111. https://doi.org/10.1002/ana.410190202

    Article  CAS  PubMed  Google Scholar 

  34. Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X (2022) Glutamate excitotoxicity: potential therapeutic target for ischemic stroke. Biomed Pharmacother 151:113125. https://doi.org/10.1016/j.biopha.2022.113125

    Article  CAS  PubMed  Google Scholar 

  35. Kaplan-Arabaci O, Acari A, Ciftci P, Gozuacik D (2022) Glutamate scavenging as a neuroreparative strategy in ischemic stroke. Front Pharmacol 13:866738. https://doi.org/10.3389/fphar.2022.866738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luoma JI, Kelley BG, Mermelstein PG (2011) Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 76(9):845–855. https://doi.org/10.1016/j.steroids.2011.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321. https://doi.org/10.1038/35002090

    Article  CAS  PubMed  Google Scholar 

  38. Papazian I, Kyrargyri V, Evangelidou M, Voulgari-Kokota A, Probert L (2018) Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface GluR1, and is partly mediated by TNF. Int J Mol Sci 19(3):651. https://doi.org/10.3390/ijms19030651

  39. Verma M, Wills Z, Chu CT (2018) Excitatory dendritic mitochondrial calcium toxicity: implications for parkinson’s and other neurodegenerative diseases. Front Neurosci 12:523. https://doi.org/10.3389/fnins.2018.00523

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bauer TM, Murphy E (2020) Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res 126(2):280–293. https://doi.org/10.1161/circresaha.119.316306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C (2021) Different roles of mitochondria in cell death and inflammation: focusing on mitochondrial quality control in ischemic stroke and reperfusion. Biomedicines 9(2):169. https://doi.org/10.3390/biomedicines9020169

  42. Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE (2019) NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke 14(6):574–591. https://doi.org/10.1177/1747493019841242

    Article  PubMed  Google Scholar 

  43. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  44. Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD (2013) Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol 191(10):5230–5238. https://doi.org/10.4049/jimmunol.1301490

    Article  CAS  PubMed  Google Scholar 

  45. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36(3):401–414. https://doi.org/10.1016/j.immuni.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107. https://doi.org/10.1038/nature08780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang JZ, Liu Z, Liu J, Ren JX, Sun TS (2014) Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue. Int J Mol Med 33(4):817–824. https://doi.org/10.3892/ijmm.2014.1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian H, Chen X, Liao J, Yang T, Cheng S, Mei Z, Ge J (2022) Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials. J Cell Mol Med 26(4):1000–1012. https://doi.org/10.1111/jcmm.17189

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stotland A (1853) Gottlieb RA (2015) Mitochondrial quality control: Easy come, easy go. Biochim Biophys Acta 1853(10 Pt B):2802–2811. https://doi.org/10.1016/j.bbamcr.2014.12.041

    Article  CAS  Google Scholar 

  50. Wu M, Gu X, Ma Z (2021) Mitochondrial quality control in cerebral ischemia-reperfusion injury. Mol Neurobiol 58(10):5253–5271. https://doi.org/10.1007/s12035-021-02494-8

    Article  CAS  PubMed  Google Scholar 

  51. Yang M, He Y, Deng S, Xiao L, Tian M, Xin Y, Lu C, Zhao F, Gong Y (2021) Mitochondrial quality control: a pathophysiological mechanism and therapeutic target for stroke. Front Mol Neurosci 14:786099. https://doi.org/10.3389/fnmol.2021.786099

    Article  CAS  PubMed  Google Scholar 

  52. Clark MA, Shay JW (1982) Mitochondrial transformation of mammalian cells. Nature 295(5850):605–607. https://doi.org/10.1038/295605a0

    Article  CAS  PubMed  Google Scholar 

  53. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103(5):1283–1288. https://doi.org/10.1073/pnas.0510511103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S (2009) Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol 296(1):H94-h105. https://doi.org/10.1152/ajpheart.00567.2008

    Article  CAS  PubMed  Google Scholar 

  55. Ikeda G, Santoso MR, Tada Y, Li AM, Vaskova E, Jung JH, O’Brien C, Egan E, Ye J, Yang PC (2021) Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol 77(8):1073–1088. https://doi.org/10.1016/j.jacc.2020.12.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Doulamis IP, Guariento A, Duignan T, Kido T, Orfany A, Saeed MY, Weixler VH, Blitzer D, Shin B, Snay ER, Inkster JA, Packard AB, Zurakowski D, Rousselle T, Bajwa A, Parikh SM, Stillman IE, Del Nido PJ, McCully JD (2020) Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Renal Physiol 319(3):F403-f413. https://doi.org/10.1152/ajprenal.00255.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nascimento-Dos-Santos G, de-Souza-Ferreira E, Linden R, Galina A, Petrs-Silva H (2021) Mitotherapy: unraveling a promising treatment for disorders of the central nervous system and other systemic conditions. Cells 10(7):1827. https://doi.org/10.3390/cells10071827

  58. Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P (2021) Mitochondrial transfer in cancer: a comprehensive review. Int J Mol Sci 22(6):3245. https://doi.org/10.3390/ijms22063245

  59. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765. https://doi.org/10.1038/nm.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xing C, Lo EH (2017) Help-me signaling: non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 152:181–199. https://doi.org/10.1016/j.pneurobio.2016.04.004

    Article  PubMed  Google Scholar 

  61. Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O, Christov C, Baudin X, Auber F, Yiou R, Dubois-Randé JL, Rodriguez AM (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29(5):812–824. https://doi.org/10.1002/stem.632

    Article  CAS  PubMed  Google Scholar 

  62. Vallabhaneni KC, Haller H, Dumler I (2012) Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev 21(17):3104–3113. https://doi.org/10.1089/scd.2011.0691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun C, Liu X, Wang B, Wang Z, Liu Y, Di C, Si J, Li H, Wu Q, Xu D, Li J, Li G, Wang Y, Wang F, Zhang H (2019) Endocytosis-mediated mitochondrial transplantation: transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics 9(12):3595–3607. https://doi.org/10.7150/thno.33100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T, Harashima H (2020) Challenges in promoting mitochondrial transplantation therapy. Int J Mol Sci 21(17):6365. https://doi.org/10.3390/ijms21176365

  65. Chang JC, Wu SL, Liu KH, Chen YH, Chuang CS, Cheng FC, Su HL, Wei YH, Kuo SJ, Liu CS (2016) Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res 170:40-56.e43. https://doi.org/10.1016/j.trsl.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  66. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S (2018) Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci 25(1):31. https://doi.org/10.1186/s12929-018-0429-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. D’Souza A, Burch A, Dave KM, Sreeram A, Reynolds MJ, Dobbins DX, Kamte YS, Zhao W, Sabatelle C, Joy GM, Soman V, Chandran UR, Shiva SS, Quillinan N, Herson PS, Manickam DS (2021) Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. J Control Release 338:505–526. https://doi.org/10.1016/j.jconrel.2021.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Veziroglu EM, Mias GI (2020) Characterizing extracellular vesicles and their diverse RNA contents. Front Genet 11:700. https://doi.org/10.3389/fgene.2020.00700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma H, Jiang T, Tang W, Ma Z, Pu K, Xu F, Chang H, Zhao G, Gao W, Li Y, Wang Q (2020) Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice. Clin Sci (Lond) 134(16):2161–2175. https://doi.org/10.1042/cs20200530

    Article  CAS  PubMed  Google Scholar 

  70. Shi C, Guo H, Liu X (2021) Platelet mitochondria transplantation rescues hypoxia/reoxygenation-induced mitochondrial dysfunction and neuronal cell death involving the FUNDC2/PIP3/Akt/FOXO3a Axis. Cell Transplant 30:9636897211024210. https://doi.org/10.1177/09636897211024210

    Article  PubMed  Google Scholar 

  71. Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133(2):245–261. https://doi.org/10.1007/s00401-017-1667-0

    Article  PubMed  PubMed Central  Google Scholar 

  72. Holloway PM, Gavins FN (2016) Modeling ischemic stroke in vitro: status quo and future perspectives. Stroke 47(2):561–569. https://doi.org/10.1161/strokeaha.115.011932

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13(8):3510–3524. https://doi.org/10.1523/jneurosci.13-08-03510.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xie Q, Zeng J, Zheng Y, Li T, Ren J, Chen K, Zhang Q, Xie R, Xu F, Zhu J (2021) Mitochondrial transplantation attenuates cerebral ischemia-reperfusion injury: possible involvement of mitochondrial component separation. Oxid Med Cell Longev 2021:1006636. https://doi.org/10.1155/2021/1006636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang PJ, Kuo CC, Lee HC, Shen CI, Cheng FC, Wu SF, Chang JC, Pan HC, Lin SZ, Liu CS, Su HL (2016) Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant 25(5):913–927. https://doi.org/10.3727/096368915x689785

    Article  CAS  PubMed  Google Scholar 

  76. Li X, Li Y, Zhang Z, Bian Q, Gao Z, Zhang S (2021) Mild hypothermia facilitates mitochondrial transfer from astrocytes to injured neurons during oxygen-glucose deprivation/reoxygenation. Neurosci Lett 756:135940. https://doi.org/10.1016/j.neulet.2021.135940

    Article  CAS  PubMed  Google Scholar 

  77. Kalda A, Eriste E, Vassiljev V, Zharkovsky A (1998) Medium transitory oxygen-glucose deprivation induced both apoptosis and necrosis in cerebellar granule cells. Neurosci Lett 240(1):21–24. https://doi.org/10.1016/s0304-3940(97)00914-2

    Article  CAS  PubMed  Google Scholar 

  78. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91. https://doi.org/10.1161/01.str.20.1.84

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Z, Ma Z, Yan C, Pu K, Wu M, Bai J, Li Y, Wang Q (2019) Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav Brain Res 356:322–331. https://doi.org/10.1016/j.bbr.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  80. Liu K, Guo L, Zhou Z, Pan M, Yan C (2019) Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 123:74–80. https://doi.org/10.1016/j.mvr.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  81. Yip HK, Dubey NK, Lin KC, Sung PH, Chiang JY, Chu YC, Huang CR, Chen YL, Deng YH, Cheng HC, Deng WP (2021) Melatonin rescues cerebral ischemic events through upregulated tunneling nanotube-mediated mitochondrial transfer and downregulated mitochondrial oxidative stress in rat brain. Biomed Pharmacother 139:111593. https://doi.org/10.1016/j.biopha.2021.111593

    Article  CAS  PubMed  Google Scholar 

  82. Pourmohammadi-Bejarpasi Z, Roushandeh AM, Saberi A, Rostami MK, Toosi SMR, Jahanian-Najafabadi A, Tomita K, Kuwahara Y, Sato T, Roudkenar MH (2020) Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 165:70–80. https://doi.org/10.1016/j.brainresbull.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  83. Kim JY, Park J, Chang JY, Kim SH, Lee JE (2016) Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Exp Neurobiol 25(5):241–251. https://doi.org/10.5607/en.2016.25.5.241

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xu S, Lu J, Shao A, Zhang JH, Zhang J (2020) Glial cells: role of the immune response in ischemic stroke. Front Immunol 11:294. https://doi.org/10.3389/fimmu.2020.00294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2020) Potential Roles of myeloid differentiation factor 2 on neuroinflammation and its possible interventions. Mol Neurobiol 57(11):4825–4844. https://doi.org/10.1007/s12035-020-02066-2

    Article  CAS  PubMed  Google Scholar 

  86. Nakamura Y, Lo EH, Hayakawa K (2020) Placental mitochondria therapy for cerebral ischemia-reperfusion injury in mice. Stroke 51(10):3142–3146. https://doi.org/10.1161/strokeaha.120.030152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT, Zorov DB (2015) Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: The role of crosstalk between cells. Stem Cells Transl Med 4(9):1011–1020. https://doi.org/10.5966/sctm.2015-0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bertero E, Maack C, O’Rourke B (2018) Mitochondrial transplantation in humans: “magical” cure or cause for concern? J Clin Investig 128(12):5191–5194. https://doi.org/10.1172/jci124944

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nasoni MG, Carloni S, Canonico B, Burattini S, Cesarini E, Papa S, Pagliarini M, Ambrogini P, Balduini W, Luchetti F (2021) Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells. J Pineal Res 71(1):e12747. https://doi.org/10.1111/jpi.12747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflammaging. Prog Neurobiol 127–128:46–63. https://doi.org/10.1016/j.pneurobio.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  91. Fiorina P, Lattuada G, Silvestrini C, Ponari O, Dall’Aglio P (1999) Disruption of nocturnal melatonin rhythm and immunological involvement in ischaemic stroke patients. Scand J Immunol 50(2):228–231. https://doi.org/10.1046/j.1365-3083.1999.00579.x

    Article  CAS  PubMed  Google Scholar 

  92. Atanassova PA, Terzieva DD, Dimitrov BD (2009) Impaired nocturnal melatonin in acute phase of ischaemic stroke: cross-sectional matched case-control analysis. J Neuroendocrinol 21(7):657–663. https://doi.org/10.1111/j.1365-2826.2009.01881.x

    Article  CAS  PubMed  Google Scholar 

  93. Bernardi P, Rasola A, Forte M, Lippe G (2015) The Mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95(4):1111–1155. https://doi.org/10.1152/physrev.00001.2015

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED (2021) Cardiac energy metabolism in heart failure. Circ Res 128(10):1487–1513. https://doi.org/10.1161/circresaha.121.318241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All figures are created with BioRender.com.

Funding

This work was supported by the Senior Research Scholar Grant from the National Research Council of Thailand (SCC); Thailand Science Research and Innovation-Chaing Mai University (Fundamental Fund 2565 to SCC); the NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (NC); and the Chiang Mai University Center of Excellence Award (NC).

Author information

Authors and Affiliations

Authors

Contributions

NC and SCC: conception and funding acquisition; HTH: writing-original draft; TOO, NA, NC, and SCC: writing-reviewing and editing.

Corresponding author

Correspondence to Siriporn C Chattipakorn.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

All authors have given final approval of this version and agreed to publish this article here.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Oo, T.T., Apaijai, N. et al. An Updated Review of Mitochondrial Transplantation as a Potential Therapeutic Strategy Against Cerebral Ischemia and Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 60, 1865–1883 (2023). https://doi.org/10.1007/s12035-022-03200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03200-y

Keywords

Navigation