Skip to main content

Advertisement

Log in

Autophagic Molecular Alterations in the Mouse Cerebellum Experimental Autoimmune Encephalomyelitis Model Following Treatment with Cannabidiol and Fluoxetine

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 06 January 2023

This article has been updated

Abstract

The crosstalk between autophagy and apoptosis is one of the most important processes involved in the cell program death, and several mechanisms including oligodendrocyte apoptosis and autophagy play significant roles in activating macrophages, microglial cells, and finally demyelination in neurodegenerative disease. The antidepressants and anti-apoptotic mechanisms of fluoxetine (FLX) and cannabidiol (CBD) commence an autophagic event that can effectively repair myelin. This study aimed to investigate the effect of those reagents on the rate of demyelination in the cerebellum, an important site for white matter in a mouse model of experimental autoimmune encephalomyelitis (EAE). EAE was induced in twenty four adult female C57Bl/6 mice were inducted the EAE model; FLX treatment which was performed (10 mg/kg/IP) and CBD; were treated (5 mg/kg/IP); and their cerebellum was used for Western blotting, real-time PCR to autophagic markers of LC3II, Beclin-1, and apoptotic markers Bax and Bcl2 evaluation and Luxol Fast Blue staining to the assessment of demyelination. The level of autophagic markers was expressively elevated (P < 0.01) but the pro-apoptotic markers and Bax/Bcl2 ratio were reduced (P < 0.05). Luxol Fast Blue staining confirmed the noteworthy diminution of demyelination in treatment groups (P < 0.001). This finding clarified that FLX and CBD ameliorate the severity of the EAE model. Combinatory treatments of these two agents are suggested for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

Abbreviations

CNS:

Central nervous system

MS:

Multiple sclerosis

EAE:

Experimental autoimmune encephalomyelitis

CBD:

Cannabidiol

FLX:

Fluoxetine

MOG:

Myelin oligodendrocyte glycoprotein

BAX:

BCL2-associated X, apoptosis regulator

BCL2:

B cell lymphoma 2

LC3II:

Low chain protein

References

  1. Wiedrick J, Meza- Romero R, Gerstner G, Seifert H, Chaudhary P, Headrick A, Kent G, Maestas A et al (2021) Sex differences in EAE reveal common and distinct cellular and molecular components. Cell Immunol 359:104242. https://doi.org/10.1016/j.cellimm.2020.104242

  2. Liang P, Le W (2015) Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci Bull 31(4):435–444. https://doi.org/10.1007/s12264-015-1545-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacKenzie G, Tiwari-Woodruff A, Seema KS, Gaurav A (2009) Purkinje cell loss in experimental autoimmune encephalomyelitis. Neuroimage 48(4):637–651. https://doi.org/10.1007/s12264-015-1545-5

    Article  CAS  Google Scholar 

  4. Lublin FD, Reingold SC, Cohen J, Cutter A (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurol 83(3):278–286. https://doi.org/10.1212/WNL.0000000000000560

    Article  Google Scholar 

  5. Weier K, Banwell BC, Collins A (2015) Louis D (2015) The role of the cerebellum in multiple sclerosis. The Cerebellum 14(3):364–374. https://doi.org/10.1007/s12311-014-0634-8

    Article  PubMed  Google Scholar 

  6. Taichi H, Nakamura H, Matsui K, Yamamoto M, Nakahara A (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nat 441(7095):885–889. https://doi.org/10.1038/nature04724

    Article  CAS  Google Scholar 

  7. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nat 441(7095):880–884. https://doi.org/10.1038/nature04723

    Article  CAS  Google Scholar 

  8. Rangaraju S, Verrier JD, Madorsky I, Nicks J (2010) Rapamycin activates autophagy and improves myelination in explant cultures from neuropathic mice. J Neurosci 30(34):11388–11397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sierra-Fonseca JA, Rodriguez MT, Lira AO (2021) Autophagy induction and accumulation of phosphorylated tau in the hippocampus and prefrontal cortex of adult C57BL/6 mice subjected to adolescent fluoxetine treatment. J Alzheimers Dis 83(4):1691–1702. https://doi.org/10.3233/jad-210475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marchetti P, Masini MJA (2009) Autophagy and the pancreatic beta-cell in human type 2 diabetes. Autophagy 5(7):1055–1056. https://doi.org/10.4161/auto.5.7.9511

  11. Shu XS, Yiming S, Xiyang Z (2019) Yuanzhang B (2019) The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis 10(8):1–16. https://doi.org/10.1038/s41419-019-1813-9

    Article  CAS  Google Scholar 

  12. Furgiuele A, Cosentino M (2021) Immunomodulatory potential of cannabidiol in multiple sclerosis: a systematic review. J Neuroimmune Pharmacol 16(2):251–1269. https://doi.org/10.1007/s11481-021-09982-7

  13. Feng X, Hou H, Zou Y (2017) Defective autophagy is associated with neuronal injury in a mouse model of multiple sclerosis. Bosn J Basic Med Sci 171(2):95. https://doi.org/10.17305/bjbms.2017.1696

    Article  CAS  Google Scholar 

  14. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18(5):1106–1121. https://doi.org/10.1038/s41423-020-00630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. García-Arencibia M (2007) Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res 1134:162–170. https://doi.org/10.1016/j.brainres.2006.11.063

    Article  CAS  PubMed  Google Scholar 

  16. Rahimi Faizi A, Talebi M, Noorbakhsh F, Kahrizi F (2015) Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neurosci 290:279–287. https://doi.org/10.1016/j.neuroscience.2015.01.030

    Article  CAS  Google Scholar 

  17. Oral O et al (2012) Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17(8):810–820. https://doi.org/10.1007/s10495-012-0735-0

    Article  CAS  PubMed  Google Scholar 

  18. Wang D et al (2022) A Protein-centric perspective of autophagy and apoptosis signaling and crosstalk in health and disease. Biochemistry of Apoptosis and Autophagy. Springer, pp 1–22

    Google Scholar 

  19. Hu C (2019) Reduced expression of the ferroptosis inhibitor glutathione peroxidase‐4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurochem 148(3):426–439. https://doi.org/10.1111/jnc.14604

  20. Kapuy O et al (2013) A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol BioSyst 9(2):296–306. https://doi.org/10.1039/c2mb25261a

    Article  CAS  PubMed  Google Scholar 

  21. Gurkar AU et al (2013) Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat Commun 4(1):1–13. https://doi.org/10.1038/ncomms3189

    Article  CAS  Google Scholar 

  22. Pereira SR, Hackett B, O’Driscoll (2021) Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 5:3. https://doi.org/10.1042/NS20200080

    Article  Google Scholar 

  23. Zhang F et al (2012) Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 18:S213–S217. https://doi.org/10.1016/S1353-8020(11)70066-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Govahi A, Amjadi F, Nasr-Esfahani M, Mehdizadeh M (2021) Accompaniment of time-lapse parameters and cumulus cell RNA-sequencing in embryo evaluation. Reprod Sci 29(2):395–409. https://doi.org/10.1007/s43032-021-00811-z

    Article  PubMed  Google Scholar 

  25. Khaksar S, Bigdeli M, Samiee A, Shirazi-Zand Z (2022) Antioxidant and anti-apoptotic effects of cannabidiol in model of ischemic stroke in rats. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2022.01.001

    Article  PubMed  Google Scholar 

  26. Farahmand F, Nourshahi M, Soleimani M, Rajabi H, Power KE (2020) The effect of 6 weeks of high intensity interval training on myelin biomarkers and demyelination in experimental autoimmune encephalomyelitis model. J Neuroimmunol 346:577306. https://doi.org/10.1016/j.jneuroim.2020.577306

    Article  CAS  PubMed  Google Scholar 

  27. Zirak A, Soleimani M, Jameie B, Abdollahifar SB (2021) Related fluoxetine and methylprednisolone changes of TNF-α and IL-6 expression in the hypothyroidism rat model of spinal cord injury. Cell J 23(7):763–771. https://doi.org/10.22074/cellj.2021.7459

    Article  PubMed  PubMed Central  Google Scholar 

  28. Esmaeilzadeh E, Soleimani M, Zare-Abdollahi D, Jameie B, Khorram Khorshid HR (2019) Curcumin ameliorates experimental autoimmune encephalomyelitis in a C57BL/6 mouse model. Drug Dev Res 80(5):629–636. https://doi.org/10.1002/ddr.21540

    Article  CAS  PubMed  Google Scholar 

  29. Mardiguian M, Serres S, Ladds S, Campbell E, Sandra J (2013) Anti–IL-17A treatment reduces clinical score and VCAM-1 expression detected by in vivo magnetic resonance imaging in chronic relapsing EAE ABH mice. Am J Pathol 182(6):2071–2081. https://doi.org/10.1016/j.ajpath.2013.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soleimani M, Jameie B, Mehdizadeh MK (2014) Vitamin D3 influence the Th1/Th2 ratio in C57BL/6 induced model of experimental autoimmune encephalomyelitis. Iran J Basic Med Sci 17(10):785. https://doi.org/10.22038/IJBMS.2014.3454

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zamani M, Katebi M, Mehdizadeh M, Soleimani M (2012) Coenzyme Q10 protects hippocampal neurons against ischemia/ reperfusion injury via modulation of BAX/Bcl-2 expression. Basic Clin Neurosci J 3(5):5–10

    Google Scholar 

  32. Esmaeilzadeh E, Gardaneh M, Gharib E, Sabouni F (2013) Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis. Neurochem res 38(8):1590–1604

    Article  CAS  PubMed  Google Scholar 

  33. MacKenzie-Graham AT, Matthew RS, Kaanan PA, Cynthia S, Lauren V (2006) Cerebellar cortical atrophy in experimental autoimmune encephalomyelitis. Neuroimage 32(3):1016–1023. https://doi.org/10.1016/j.neuroimage.2006.05.006

    Article  PubMed  Google Scholar 

  34. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–48. https://doi.org/10.1038/nrd3050

    Article  CAS  PubMed  Google Scholar 

  35. Moujalled D, Strasser A, Liddell JR (2021) Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 28(7):2029–2044. https://doi.org/10.1038/s41418-021-00814-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Patergnani S, Castellazzi M, Bonora M, Marchi S, Casetta I, Pugliatti M (2018) Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. J Neurol Neurosurg Psychiatry 89(4):439–441. https://doi.org/10.1136/jnnp-2017-316234

    Article  PubMed  Google Scholar 

  37. Wu JJ, Quijano C, Chen E, Liu H, Cao L (2009) Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY) 1(4):425–37. https://doi.org/10.18632/aging.100038

    Article  CAS  PubMed  Google Scholar 

  38. Gu J, Dai S, Liu Y, Liu H, Zhang Y, Ji X (2018) Activation of Ca(2+)-sensing receptor as a protective pathway to reduce cadmium-induced cytotoxicity in renal proximal tubular cells. Sci Rep 8(1):1092. https://doi.org/10.1038/s41598-018-19327-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goraki I, Shiri-Shahsavar MR, Pourhassan-Moghaddam (2022) Cannabis sativa L. oil extract affects neuroinflammation, clinical score, and cannabinoid receptor-1 gene expression in C57bl/6 experimental autoimmune encephalomyelitis. Immunopathol Persa 8(1):e4–e4. https://doi.org/10.34172/ipp.2022.04

  40. Li Z, Li Q, Wei LV, Jiang L, Chengyan G (2019) The interaction of Atg4B and Bcl-2 plays an important role in Cd-induced crosstalk between apoptosis and autophagy through disassociation of Bcl-2-Beclin1 in A549 cells. Free Radical Biol Med 130:576–591. https://doi.org/10.1016/j.freeradbiomed.2018.11.020

    Article  CAS  Google Scholar 

  41. Zhu Y, Luan P, Liu X, Bao J, Liu Q (2021) Crosstalk between autophagy and apoptosis regulates cerebral cortex and cerebellum neurodegeneration induced by cadmium in swine via the PI3K/AKT/AMPK pathway. Ecotoxicol Environ Saf 228:113053. https://doi.org/10.1016/j.ecoenv.2021.113053

    Article  CAS  Google Scholar 

  42. Merenlender-Wagner A, Malishkevich AS, Udawela MZ, Gibbons A, Scarr E (2015) Autophagy has a key role in the pathophysiology of schizophrenia. Mol psychiatry 20(1):126–132. https://doi.org/10.1038/mp.2013.174

    Article  CAS  PubMed  Google Scholar 

  43. Misrielal C (2020) Autophagy in multiple sclerosis: two sides of the same coin. Front Cell Neurosci 14:603710. https://doi.org/10.3389/fncel.2020.60371

  44. Rein T (2019) Is autophagy involved in the diverse effects of antidepressants? Cells 8(1):44. https://doi.org/10.3389/fpsyt.2019.00337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chinnapaka S, Bakthavachalam V, Munirathinam G (2020) Repurposing antidepressant sertraline as a pharmacological drug to target prostate cancer stem cells: dual activation of apoptosis and autophagy signaling by deregulating redox balance. Am J Cancer Res 10(7):2043

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhat R (2017) Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine. J Neuroimmunol 313:77–81. https://doi.org/10.1016/j.jneuroim.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  47. Maroon J, Bost J (2018) Review of the neurological benefits of phytocannabinoids. Surg Neurol Int 9:91. https://doi.org/10.4103/sni.sni_45_18

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mercer LD (2017) MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochem Int 105:80–90. https://doi.org/10.1016/j.neuint.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  49. Li JR (2017) Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subarachnoid hemorrhage in rats. J Neuroinflammation 14(1):186. https://doi.org/10.1186/s12974-017-0959-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Y (2017) miR-16 and fluoxetine both reverse autophagic and apoptotic change in chronic unpredictable mild stress model rats. Front Neurosci 11:428. https://doi.org/10.3389/fnins.2017.00428

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li D (2021) Reactive oxygen species as a link between antioxidant pathways and autophagy. Oxid Med Cell Longev. https://doi.org/10.1155/2021/5583215

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kirkova M (2010) Antioxidant activity of fluoxetine: studies in mice melanoma model. Cell Biochem Funct 28(6):497–502. https://doi.org/10.1002/cbf.1682

    Article  CAS  PubMed  Google Scholar 

  53. Zafir A, Banu N (2007) Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 572(1):23–31. https://doi.org/10.1016/j.ejphar.2007.05.062

    Article  CAS  PubMed  Google Scholar 

  54. Wernicke J (1985) The side effect profile and safety of fluoxetine. J Clin Psychiatry 46(3 ,pt2):59–67. https://doi.org/10.1016/j.cellimm.2020.104242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Iran University of Medical Sciences (IUMS). Experiments were performed in the laboratories of the Anatomy Department and Cellular and Molecular Research Center (CMRC), IUMS and Basic Science Lab, Department of Medical Basic Sciences, and the University of Social Welfare and Rehabilitation Sciences. The authors would like to thank all who helped us during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design; material preparation, data collection, and analysis were performed by MS, M.AT, and MM. The first draft of the manuscript was written by MS and M.AT. All authors commented on previous versions of the manuscript. MA and HM conducted molecular experiments and real-time PCR analysis in cerebellum. RS and FM contributed extensively to the conclusion and also in the finalization of the manuscript and approved the final draft. All authors read and approved the final manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maryam Soleimani or Mehdi Mehdizadeh.

Ethics declarations

Ethics Approval

All experimental procedures were conducted in accordance with the Guidelines for the animal studies was received from the Iran University of Medical Sciences, Tehran, Iran (IR.IUMS.FMD.REC.1398.433).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cannabidiol and fluoxetine could ameliorate the severity of the EAE model.

• Compounds related to the control of serotonin levels can have a key role in the regulation of crosstalk between autophagic and apoptotic markers in autoimmune encephalomyelitis.

• Autophagic markers were expressed at varying levels in the cerebellum of EAE mice after receiving cannabidiol and fluoxetine.

• Demeylination in folium of the cerebellum is related to treatment by cannabidiol and fluoxetine.

Dr. Mehdi Mehdizadeh is the first corresponding author and Maryam Soleimani is the second corresponding author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1142 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavan Tavakoli, M., Soleimani, M., Marzban, H. et al. Autophagic Molecular Alterations in the Mouse Cerebellum Experimental Autoimmune Encephalomyelitis Model Following Treatment with Cannabidiol and Fluoxetine. Mol Neurobiol 60, 1797–1809 (2023). https://doi.org/10.1007/s12035-022-03170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03170-1

Keywords

Navigation