Skip to main content

Advertisement

Log in

Formulation and Development of Curcumin–Piperine-Loaded S-SNEDDS for the Treatment of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Curcumin (CUR) and piperine (PIP) are very well-known phytochemicals that claimed to have many health benefits and have been widely used in foods and traditional medicines. This study investigated the therapeutic efficacy of these compounds to treat Alzheimer’s disease (AD). However, poor oral bioavailability and permeability of curcumin are a major challenge for formulation scientists. In this research study, the researcher tried to enhance the bioavailability and permeability of curcumin by a nanotechnological approach. In this research study, we developed a CUR–PIP-loaded SNEDDS in various oils. Optimised formulation NF3 was subjected to evaluate its therapeutic effectiveness on AD animal model in comparison with untreated AD model and treated group (by market formulation donepezil). On the basis of characterisation results, it is confirmed that NF3 formulation is the best formulation. The optimised formulation shows a significant dose-dependent manner therapeutic effect on AD-induced model. Novel formulation CUR–PIP solid-SNEDDS was successfully developed and optimised. It is expected that the developed S-SNEDDS can be a potential, safe and effective carrier for the oral delivery of curcumin to the brain. To date, this article is the only study of CUR–PIP-loaded S-SNEDDS for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Tosi G et al (2019) Nanomedicine in Alzheimer’s disease: amyloid beta targeting strategy. Progr Brain Res 245:57–88. https://doi.org/10.1016/bs.pbr.2019.03.001 (Elsevier)

    Article  Google Scholar 

  2. WHO (2021) Dementia. WHO. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 07 Feb 2022

  3. (2016) Basics of Alzheimer’s disease. Alzheimer’s Association. https://www.alz.org/national/documents/brochure_basicsofalz_low.pdf. Accessed 02 Feb 2022

  4. WHO (2006) Neurological disorders: public health challenges. https://www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf. Accessed 07 Feb 2022

  5. Alzheimer’s disease facts and figures (2021) Alzheimer’s & Dementia 17(3):327–406. https://doi.org/10.1002/alz.12328

    Article  CAS  Google Scholar 

  6. Alzheimer’s disease facts and figures (2020) Alzheimer’s & Dementia 16(3):391–460. https://doi.org/10.1002/alz.12068

    Article  Google Scholar 

  7. Saeedi M, Eslamifar M, Khezri K, Dizaj SM (2019) Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 111:666–675. https://doi.org/10.1016/j.biopha.2018.12.133

    Article  CAS  Google Scholar 

  8. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochemistry 2013:1–18. https://doi.org/10.1155/2013/238428

    Article  CAS  Google Scholar 

  9. Ceña V, Játiva P (2018) Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine 13(13):1513–1516. https://doi.org/10.2217/nnm-2018-0139

    Article  Google Scholar 

  10. Bellettato CM, Scarpa M (2018) Possible strategies to cross the blood–brain barrier. Ital J Pediatr 44(S2):131. https://doi.org/10.1186/s13052-018-0563-0

    Article  CAS  Google Scholar 

  11. Hatab HM, Abdel Hamid FF, Soliman AF, Al-Shafie TA, Ismail YM, El-Houseini ME (2019) A combined treatment of curcumin, piperine, and taurine alters the circulating levels of IL-10 and miR-21 in hepatocellular carcinoma patients: a pilot study. J Gastrointest Oncol 10(4):766–776. https://doi.org/10.21037/jgo.2019.03.07

    Article  Google Scholar 

  12. Kotha RR, Luthria DL (2019) Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 24(16):1–27. https://doi.org/10.3390/molecules24162930

    Article  CAS  Google Scholar 

  13. Kumar A, Singh A, Aggarwal A (2017) Therapeutic potentials of herbal drugs for Alzheimer’s disease—an overview. Indian J Exp Biol 55(2):63–73

    CAS  Google Scholar 

  14. Rane JS, Bhaumik P, Panda D (2017) Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J Alzheimer’s Dis 60(3):999–1014. https://doi.org/10.3233/JAD-170351

    Article  CAS  Google Scholar 

  15. Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C (2019) The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: a systematic review of pre-clinical and clinical studies. Brain Res 1725(146476):1–14. https://doi.org/10.1016/J.BRAINRES.2019.146476

    Article  Google Scholar 

  16. Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11(1):13–19. https://doi.org/10.4103/0972-2327.40220

    Article  Google Scholar 

  17. Begum AN et al (2008) Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 326(1):196–208. https://doi.org/10.1124/jpet.108.137455

    Article  CAS  Google Scholar 

  18. Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102(4):1095–1104. https://doi.org/10.1111/j.1471-4159.2007.04613.x

    Article  CAS  Google Scholar 

  19. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21(21):8370–8377. https://doi.org/10.1523/JNEUROSCI.21-21-08370.2001

    Article  CAS  Google Scholar 

  20. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Molec Life Sci 65(11):1631–1652. https://doi.org/10.1007/s00018-008-7452-4

    Article  CAS  Google Scholar 

  21. Baum L et al (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer Disease. J Clin Psychopharmacol 28(1):110–113. https://doi.org/10.1097/jcp.0b013e318160862c

    Article  Google Scholar 

  22. Lista S, Garaci F, Toschi N, Hampel H (2013) Imaging epigenetics in Alzheimer’s disease. Curr Pharm Des 19(36):6393–6415. https://doi.org/10.2174/13816128113199990370

    Article  CAS  Google Scholar 

  23. Nasr A, Gardouh A, Ghorab M (2016) Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics 8(3):1–29. https://doi.org/10.3390/PHARMACEUTICS8030020

    Article  Google Scholar 

  24. Park H, Ha E-S, Kim M-S (2020) Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics 12(4):365. https://doi.org/10.3390/pharmaceutics12040365

    Article  CAS  Google Scholar 

  25. Kesarwani K, Gupta R (2013) Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 3(4):253–266. https://doi.org/10.1016/S2221-1691(13)60060-X

    Article  CAS  Google Scholar 

  26. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18. https://doi.org/10.4143/crt.2014.46.1.2

    Article  CAS  Google Scholar 

  27. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(04):353–356. https://doi.org/10.1055/s-2006-957450

    Article  CAS  Google Scholar 

  28. Kazi M, Shahba AA, Alrashoud S, Alwadei M, Sherif AY, Alanazi FK (2020) Bioactive self-nanoemulsifying drug delivery systems (bio-SNEDDS) for combined oral delivery of curcumin and piperine. Molecules 25(7):1703. https://doi.org/10.3390/MOLECULES25071703

    Article  CAS  Google Scholar 

  29. Reddy MS, Sravanthi B (2018) Formulation and in vitro characterization of solid-self nanoemulsifying drug delivery system of atorvastatin calcium. Asian J Pharm 11(4):991. https://doi.org/10.22377/AJP.V11I04.1771

  30. Salunke PB, Nawale RB,  Jadhav AB (2015) Solid self emulsifying drug delivery system: a novel approach. Asian J Pharm Technol Innov 3(12):50–56. [Online]. Available: www.asianpharmtech.com. Accessed:  07 Feb 2022.

  31. Thomas L, Zakir F, Mirza Mohd. A, Anwer Md K, Ahmad FJ, Iqbal Z (2017) Development of curcumin loaded chitosan polymer based nanoemulsion gel: in vitro, ex vivo evaluation and in vivo wound healing studies. Int J Biol Macromol 101:569–579. https://doi.org/10.1016/j.ijbiomac.2017.03.066

    Article  CAS  Google Scholar 

  32. Shah A, Thakkar V, Gohel M, Baldaniya L, Gandhi T (2017) Optimization of self micro emulsifying drug delivery system containing curcumin and artemisinin using D-optimal mixture design. Saudi J Med Pharm Sci 3(5):388–398. https://doi.org/10.21276/sjmps

    Article  Google Scholar 

  33. Ma P et al (2017) Preparation of curcumin-loaded emulsion using high pressure homogenization: impact of oil phase and concentration on physicochemical stability. Food Sci Technol 84:34–46. https://doi.org/10.1016/j.lwt.2017.04.074

    Article  CAS  Google Scholar 

  34. Singh SK, Prasad Verma PR, Razdan B (2010) Glibenclamide-loaded self-nanoemulsifying drug delivery system: development and characterization. Drug Dev Industr Pharm 36(8):933–945. https://doi.org/10.3109/03639040903585143

    Article  CAS  Google Scholar 

  35. Liu W et al (2012) Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia 83(8):1532–1539. https://doi.org/10.1016/j.fitote.2012.08.021

    Article  CAS  Google Scholar 

  36. Joung HJ, Choi M, Kim JT, Park SH, Park HJ, Shin GH (2016) Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J Food Sci 81(3):N745–N753. https://doi.org/10.1111/1750-3841.13224

    Article  CAS  Google Scholar 

  37. Sakthi UM, Lobo JRF, Uppuluri KB (2013) Self nano emulsifying drug delivery systems for oral delivery of hydrophobic drugs. Biomed Pharmacol J 6(2):355–362. https://doi.org/10.13005/BPJ/425

    Article  Google Scholar 

  38. Shanmugam S, Baskaran R, Balakrishnan P, Thapa P, Yong CS, Yoo BK (2011) Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharm Biopharm 79(2):250–257. https://doi.org/10.1016/j.ejpb.2011.04.012

    Article  CAS  Google Scholar 

  39. Inugala S et al (2015) Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: in vitro and in vivo evaluation. Eur J Pharm Sci 74:1–10. https://doi.org/10.1016/j.ejps.2015.03.024

    Article  CAS  Google Scholar 

  40. Alwadei M, Kazi M, Alanazi FK (2019) Novel oral dosage regimen based on self-nanoemulsifying drug delivery systems for codelivery of phytochemicals – curcumin and thymoquinone. Saudi Pharm J 27(6):866–876. https://doi.org/10.1016/j.jsps.2019.05.008

    Article  CAS  Google Scholar 

  41. Reddy MS, Sowmya S, Ul Haq SMF (2017) Formulation and in-vitro characterization of self microemulsifying drug delivery systems of rivaroxaban. Int J Pharm Sci Res 8(8):3436–3445. [Online]. Available: https://ijpsr.com/bft-article/formulation-and-in-vitro-characterization-of-self-microemulsifying-drug-delivery-systems-of-rivaroxaban/.. Accessed: 07 Feb 2022.

  42. Patel A, Shelat P, Lalwani A (2014) Development and optimization of solid self-nanoemulsifying drug delivery system (S-SNEDDS) using Scheffe’s design for improvement of oral bioavailability of nelfinavir mesylate. Drug Deliv Transl Res 4(2):171–186. https://doi.org/10.1007/s13346-014-0191-1

    Article  CAS  Google Scholar 

  43. Khedekar K, Mittal S (2013) Self emulsifying drug delivery system: a review. Int J Pharm Sci Res 4(12):4494–4507. [Online]. Available: http://ijpsr.com/bft-article/self-emulsifying-drug-delivery-system-a-review/?view=fulltext.. Accessed: 08 Feb 2022

  44. Kommuru TR, Gurley B, Khan MA, Reddy IK (2001) Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212(2):233–246. https://doi.org/10.1016/S0378-5173(00)00614-1

    Article  CAS  Google Scholar 

  45. Kazi M et al (2019) Evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for poorly water-soluble talinolol: preparation, in vitro and in vivo assessment. Front Pharmacol 10:1–13. https://doi.org/10.3389/fphar.2019.00459

    Article  CAS  Google Scholar 

  46. Balakumar K, Raghavan CV, Selvan NT, Prasad RH, Abdu S (2013) Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B: Biointerf 112:337–343. https://doi.org/10.1016/j.colsurfb.2013.08.025

    Article  CAS  Google Scholar 

  47. Raghuveer Pathuri, Prameela Rani A (2020) Self-nanoemulsifying drug delivery system to enhance solubility and dissolution of lipophilic drug repaglinide. Asian J Pharm 14(2):290–296

    CAS  Google Scholar 

  48. Reddy MS, Rambabu B, Vijetha KA (2018) Development and evaluation of solid self nano emulsifying drug delivery system of poorly soluble olmesartan medoxomil by using adsorption on to solid carrier technique. Int J Pharm Sci Res 9(8):3398–3407. [Online]. Available: https://ijpsr.com/bft-article/development-and-evaluation-of-solid-self-nano-emulsifying-drug-delivery-system-of-poorly-soluble-olmesartan-medoxomil-by-using-adsorption-on-to-solid-carrier-technique/. Accessed: 08 Feb 2022

  49. Sheng J et al (2016) Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release 233:181–190. https://doi.org/10.1016/J.JCONREL.2016.05.015

    Article  CAS  Google Scholar 

  50. Kallakunta VR, Bandari S, Jukanti R, Veerareddy PR (2012) Oral self emulsifying powder of lercanidipine hydrochloride: formulation and evaluation. Powder Technol 221:375–382. https://doi.org/10.1016/j.powtec.2012.01.032

    Article  CAS  Google Scholar 

  51. MohdIzham MN et al (2019) Preparation and characterization of self nano-emulsifying drug delivery system loaded with citral and its antiproliferative effect on colorectal cells in vitro. Nanomaterials 9(1028):1–18. https://doi.org/10.3390/nano9071028

    Article  CAS  Google Scholar 

  52. Shahdadi Sardou H et al (2022) Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis. Eur J Pharm Sci 168(106072):4–12. https://doi.org/10.1016/J.EJPS.2021.106072

    Article  Google Scholar 

  53. Kanwal T et al (2021) Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability. J Mol Liq 324:114774. https://doi.org/10.1016/J.MOLLIQ.2020.114774

    Article  CAS  Google Scholar 

  54. Xing Z et al (2018) Ameliorative effects and possible molecular mechanisms of action of fibrauretine from Fibraurea recisa Pierre on d-galactose/AlCl3-mediated Alzheimer’s disease. RSC Adv 8(55):31646–31657. https://doi.org/10.1039/C8RA05356A

    Article  CAS  Google Scholar 

  55. Segal-Gavish H, Barzilay R, Rimoni O, Offen D (2019) Voluntary exercise improves cognitive deficits in female dominant-negative DISC1 transgenic mouse model of neuropsychiatric disorders. World J Biol Psychiatry 20(3):243–252. https://doi.org/10.1080/15622975.2017.1323118

    Article  Google Scholar 

  56. Deepthi Swapna PR, Junise V, Shibin P, Senthila S (2012) Isolation, identification and antimycobacterial evaluation of piperine from Piper longum. Pharm Lett 4(3):863–868. [Online]. Available: www.scholarsresearchlibrary.com. Accessed: 07 Feb 2022

  57. Kakkar V, Kaur IP (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49(11):2906–2913. https://doi.org/10.1016/j.fct.2011.08.006

    Article  CAS  Google Scholar 

  58. Banji D, Banji OJF, Srinivas K (2021) Neuroprotective effect of turmeric extract in combination with its essential oil and enhanced brain bioavailability in an animal model. Biomed Res Int 2021:1–12. https://doi.org/10.1155/2021/6645720

    Article  CAS  Google Scholar 

  59. Huang H-C et al (2016) Antioxidative and neuroprotective effects of curcumin in an Alzheimer’s disease rat model co-treated with intracerebroventricular streptozotocin and subcutaneous D-galactose. Journal of Alzheimer’s Disease 52(3):899–911. https://doi.org/10.3233/JAD-150872

    Article  CAS  Google Scholar 

  60. Awasthi H, Tota S, Hanif K, Nath C, Shukla R (2010) Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Sci 86(3–4):87–94. https://doi.org/10.1016/j.lfs.2009.11.007

    Article  CAS  Google Scholar 

  61. F. Naqvi, S. Haider, F. Naqvi, S. Saleem, T. Perveen, and Z. Batool. A comparative study showing greater effects of curcumin compared to donepezil on memory function in rats. Pak. J. Pharm. Sci, vol. 32, no. 1, p. 60, 2019. [Online]. Available: http://www.pjps.pk/wp-content/uploads/pdfs/32/1/Paper-8.pdf.. Accessed: 07 Feb 2022

  62. Chiroma SM, MohdMoklas MA, Mat Taib CN, Baharuldin MTH, Amon Z (2018) d-Galactose and aluminium chloride induced rat model with cognitive impairments. Biomed Pharmacother 103:1602–1608. https://doi.org/10.1016/j.biopha.2018.04.152

    Article  CAS  Google Scholar 

  63. Xian Y-F, Lin Z-X, Zhao M, Mao Q-Q, Ip S-P, Che C-T (2011) Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice. Planta Med 77(18):1977–1983. https://doi.org/10.1055/s-0031-1280125

    Article  CAS  Google Scholar 

  64. Wolf A, Bauer B, Abner EL, Ashkenazy-Frolinger T, Hartz AMS (2016) A comprehensive behavioral test battery to assess learning and memory in 129S6/Tg2576 mice. PLoS One 11(1):1–23. https://doi.org/10.1371/journal.pone.0147733

    Article  CAS  Google Scholar 

  65. Botton PH et al (2010) Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav Brain Res 214(2):254–259. https://doi.org/10.1016/J.BBR.2010.05.034

    Article  CAS  Google Scholar 

  66. Ege D (2021) Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery. Materials 14(12):3332. https://doi.org/10.3390/ma14123332

    Article  CAS  Google Scholar 

  67. Badran MM, Taha EI, Tayel MM, Al-Suwayeh SA (2014) Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J Mol Liq 190:16–22. https://doi.org/10.1016/j.molliq.2013.10.015

    Article  CAS  Google Scholar 

  68. Vogel-Ciernia A, Wood MA (2014) Examining object location and object recognition memory in mice. Curr Protocols Neurosci 69(1):8.31.1-8.31.17. https://doi.org/10.1002/0471142301.ns0831s69

    Article  Google Scholar 

  69. Yoo JH et al (2010) Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch Pharmacal Res 33(3):417–426. https://doi.org/10.1007/s12272-010-0311-5

    Article  CAS  Google Scholar 

  70. Sudhakar A, Shantakumar J, Prasad CP, Joseph MV (2021) Learning and memory enhancing effects of BacoLive ® (an enriched composition of Bacopa monnieri extract) in scopolamine induced memory impaired mice. Am J Phytomed Clin Ther 9(7):1–7. https://doi.org/10.36648/2321-2748.21.9.32

    Article  Google Scholar 

  71. Swonger AK, Rech RH (1972) Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a maze. J Comp Physiol Psychol 81(3):509–522. https://doi.org/10.1037/h0033690

    Article  CAS  Google Scholar 

  72. Wadhwa J, Asthana A, Gupta S, Shilkari Asthana G, Singh R (2014) Development and optimization of polymeric self-emulsifying nanocapsules for localized drug delivery: design of experiment approach. Scientific World Journal 2014:1–12. https://doi.org/10.1155/2014/516069

    Article  Google Scholar 

  73. Ma P et al (2018) Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. J Food Sci Technol 55(9):3485–3497. https://doi.org/10.1007/s13197-018-3273-0

    Article  CAS  Google Scholar 

  74. Zhang L et al (2012) A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomed 7:151. https://doi.org/10.2147/IJN.S27639

    Article  CAS  Google Scholar 

  75. Negi JS (2019) Nanolipid materials for drug delivery systems. In: Characterization and biology of nanomaterials for drug delivery. Elsevier, pp. 137–163. doi: https://doi.org/10.1016/B978-0-12-814031-4.00006-4

  76. Chen X, Zou L-Q, Niu J, Liu W, Peng S-F, Liu C-M (2015) The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20(8):14293–14311. https://doi.org/10.3390/molecules200814293

    Article  CAS  Google Scholar 

  77. Aziz DM, Hama JR, Alam SM (2015) Synthesising a novel derivatives of piperine from black pepper (Piper nigrum L.). J Food Measure Charac 9(3):324–331. https://doi.org/10.1007/s11694-015-9239-2

    Article  Google Scholar 

  78. Rashid R et al (2015) Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe. Int J Nanomed 10:6147–6159. https://doi.org/10.2147/IJN.S91216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Glocal School of Pharmacy, Glocal University Saharanpur, for supporting and providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

SA conceived of the presented idea. AH designed the research plan. SA performed the research, interpreted the data, and drafted the manuscript. AH revised the manuscript. All authors discussed the results and gave the final approval of the latest version to be published.

Corresponding author

Correspondence to Abdul Hafeez.

Ethics declarations

Ethics Approval

All experiments were performed as per the guidelines of CPCSEA (Committee for the Purpose of Control and Supervision of Experiments on Animals), Ministry of Environment, Forest and Climate Change, Govt. of India (Regd. No. 1435/PO/Re/S/11/CPCSEA). All protocols were permitted by the IAEC (Institutional Animal Ethics Committee) of Siddhartha Institute of Pharmacy, Dehradun Uttarakhand, India, with protocol ID SIP/IAEC/PCOL/12/2020.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Hafeez, A. Formulation and Development of Curcumin–Piperine-Loaded S-SNEDDS for the Treatment of Alzheimer’s Disease. Mol Neurobiol 60, 1067–1082 (2023). https://doi.org/10.1007/s12035-022-03089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03089-7

Keywords

Navigation