Skip to main content
Log in

Dysregulation of Circulatory Levels of lncRNAs in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract 

Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in Parkinson’s disease (PD) pathogenesis. Herein, we used gene expression profiles from GEO database to construct a PD-specific ceRNA network. Functional enrichment analysis suggested that ceRNA network might participate in the development of PD. PPI networks were constructed, and the ceRNA subnetwork based on five hub genes was set up. In a cohort of 32 PD patients and 31 healthy controls, the expression of 10 DElncRNAs (TTC3-AS1, LINC01259, ZMYND10-AS1, CHRM3-AS1, MYO16-AS1, AGBL5-IT1, HOTAIRM1, RABGAP1L-IT1, HLCS-IT1, and LINC00393) were further verified. Consistent with the microarray data, LINC01259 expression was significantly lower in PD patients compared with controls (P = 0.008). Intriguingly, such a difference was only observed among male patients and male controls when dividing study participants based on their gender (P = 0.016). However, the expression of other lncRNAs did not differ significantly between the two groups. Receiver operating characteristic (ROC) curve analysis revealed that the diagnostic power of LINC01259 was 0.694 for PD and 0.677 for early-stage PD. GSEA enrichment analysis revealed that LINC01259 was mainly enriched in biological processes associated with immune function and inflammatory response. Moreover, LINC01259 expression was not correlated with age of patients, disease duration, disease stage, MDS-UPDRS score, MDS-UPDRS III score, MMSE score, and MOCA score. The current study provides further evidence for the dysregulation of lncRNAs in circulating leukocytes of PD patients, revealing that LINC01259 has clinical potential as a novel immune and inflammatory biomarker for PD and early-stage PD diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  2. Fayyad M, Salim S, Majbour N, Erskine D, Stoops E, Mollenhauer B, El-Agnaf OMA (2019) Parkinson’s disease biomarkers based on α-synuclein. J Neurochem 150:626–636. https://doi.org/10.1111/jnc.14809

    Article  CAS  Google Scholar 

  3. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet. https://doi.org/10.1016/s0140-6736(21)00218-x

    Article  Google Scholar 

  4. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376. https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  Google Scholar 

  5. Barone P, Erro R, Picillo M (2017) Quality of life and nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol 133:499–516. https://doi.org/10.1016/bs.irn.2017.05.023

    Article  Google Scholar 

  6. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. https://doi.org/10.1038/nrg3074

    Article  CAS  Google Scholar 

  7. Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118. https://doi.org/10.1038/s41580-020-00315-9

    Article  CAS  Google Scholar 

  8. Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73:2491–2509. https://doi.org/10.1007/s00018-016-2174-5

    Article  CAS  Google Scholar 

  9. Ng SY, Lin L, Soh BS, Stanton LW (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29:461–468. https://doi.org/10.1016/j.tig.2013.03.002

    Article  CAS  Google Scholar 

  10. Khorkova O, Hsiao J, Wahlestedt C (2015) Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev 87:15–24. https://doi.org/10.1016/j.addr.2015.05.012

    Article  CAS  Google Scholar 

  11. Liu Y, Lu Z (2018) Long non-coding RNA NEAT1 mediates the toxic of Parkinson’s disease induced by MPTP/MPP+ via regulation of gene expression. Clin Exp Pharmacol Physiol 45:841–848. https://doi.org/10.1111/1440-1681.12932

    Article  CAS  Google Scholar 

  12. Lin Q, Hou S, Dai Y, Jiang N, Lin Y (2019) LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol Chem 400:1217–1228. https://doi.org/10.1515/hsz-2018-0431

    Article  CAS  Google Scholar 

  13. Chen Y, Lian YJ, Ma YQ, Wu CJ, Zheng YK, Xie NC (2018) LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology 68:212–221. https://doi.org/10.1016/j.neuro.2017.12.001

    Article  CAS  Google Scholar 

  14. Xu X, Zhuang C, Wu Z, Qiu H, Feng H, Wu J (2018) LincRNA-p21 inhibits cell viability and promotes cell apoptosis in Parkinson’s disease through activating α-synuclein expression. Biomed Res Int 2018:8181374. https://doi.org/10.1155/2018/8181374

    Article  CAS  Google Scholar 

  15. Song Z, Xie B (2021) LncRNA OIP5-AS1 reduces α-synuclein aggregation and toxicity by targeting miR-126 to activate PLK2 in human neuroblastoma SH-SY5Y cells. Neurosci Lett 740:135482. https://doi.org/10.1016/j.neulet.2020.135482

    Article  CAS  Google Scholar 

  16. Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, et al. (2018) Aging and Parkinson’s disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 115:80–91. https://doi.org/10.1016/j.freeradbiomed.2017.10.379

    Article  CAS  Google Scholar 

  17. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V (2022) Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 1-17. https://doi.org/10.1038/s41577-022-00684-6

  18. Ferrari CC, Tarelli R (2011) Parkinson’s disease and systemic inflammation. Parkinsons Dis 2011:436813. https://doi.org/10.4061/2011/436813

    Article  CAS  Google Scholar 

  19. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, et al. (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. Faseb j 19:533–542. https://doi.org/10.1096/fj.04-2751com

    Article  CAS  Google Scholar 

  20. Tecchio C, Micheletti A, Cassatella MA (2014) Neutrophil-derived cytokines: facts beyond expression. Front Immunol 5:508. https://doi.org/10.3389/fimmu.2014.00508

    Article  CAS  Google Scholar 

  21. Liu X, Quan N (2018) Microglia and CNS interleukin-1: beyond immunological concepts. Front Neurol 9:8. https://doi.org/10.3389/fneur.2018.00008

    Article  Google Scholar 

  22. Jensen MP, Jacobs BM, Dobson R, Bandres-Ciga S, Blauwendraat C, Schrag A, Noyce AJ (2021) Lower lymphocyte count is associated with increased risk of Parkinson’s disease. Ann Neurol 89:803–812. https://doi.org/10.1002/ana.26034

    Article  CAS  Google Scholar 

  23. Akıl E, Bulut A, Kaplan İ, Özdemir HH, Arslan D, Aluçlu MU (2015) The increase of carcinoembryonic antigen (CEA), high-sensitivity C-reactive protein, and neutrophil/lymphocyte ratio in Parkinson’s disease. Neurol Sci 36:423–428. https://doi.org/10.1007/s10072-014-1976-1

    Article  Google Scholar 

  24. Muñoz-Delgado L, Macías-García D, Jesús S, Martín-Rodríguez JF, Labrador-Espinosa M, Jiménez-Jaraba MV, Adarmes-Gómez A, Carrillo F, Mir P (2021) Peripheral immune profile and neutrophil-to-lymphocyte ratio in Parkinson’s disease. Mov Disord 36:2426–2430. https://doi.org/10.1002/mds.28685

    Article  CAS  Google Scholar 

  25. Shi Y, Wei B, Li L, Wang B, Sun M (2022) Th17 cells and inflammation in neurological disorders: possible mechanisms of action. Front Immunol 13:932152. https://doi.org/10.3389/fimmu.2022.932152

    Article  CAS  Google Scholar 

  26. Contaldi E, Magistrelli L, Comi C (2022) T lymphocytes in Parkinson’s disease. J Parkinsons Dis. https://doi.org/10.3233/jpd-223152

    Article  Google Scholar 

  27. Runtsch MC, Ferrara G, Angiari S (2021) Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 158:36–58. https://doi.org/10.1111/jnc.15169

    Article  CAS  Google Scholar 

  28. Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35:408–419. https://doi.org/10.1016/j.it.2014.07.005

    Article  CAS  Google Scholar 

  29. Mowel WK, Kotzin JJ, McCright SJ, Neal VD, Henao-Mejia J (2018) Control of Immune cell homeostasis and function by lncRNAs. Trends Immunol 39:55–69. https://doi.org/10.1016/j.it.2017.08.009

    Article  CAS  Google Scholar 

  30. Li G, Ma X, Zhao H, Fan J, Liu T, Luo Y, Guo Y (2022) Long non-coding RNA H19 promotes leukocyte inflammation in ischemic stroke by targeting the miR-29b/C1QTNF6 axis. CNS Neurosci Ther 28:953–963. https://doi.org/10.1111/cns.13829

    Article  CAS  Google Scholar 

  31. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10:e1003517. https://doi.org/10.1371/journal.pcbi.1003517

    Article  CAS  Google Scholar 

  32. Fan Y, Li J, Yang Q, Gong C, Gao H, Mao Z, Yuan X, Zhu S, et al. (2019) Dysregulated long non-coding RNAs in Parkinson’s disease contribute to the apoptosis of human neuroblastoma cells. Front Neurosci 13:1320. https://doi.org/10.3389/fnins.2019.01320

    Article  Google Scholar 

  33. Yang P, Lin G, Wang M, Chen X, Huang J (2022) Long non-coding RNA ANRIL interacts with microRNA-34a and microRNA-125a, and they all correlate with disease risk and severity of Parkinson’s disease. J Clin Lab Anal 36:e24037. https://doi.org/10.1002/jcla.24037

    Article  CAS  Google Scholar 

  34. Yang X, Zhang Y, Chen Y, He X, Qian Y, Xu S, Gao C, Mo C, et al. (2021) LncRNA HOXA-AS2 regulates microglial polarization via recruitment of PRC2 and epigenetic modification of PGC-1α expression. J Neuroinflammation 18:197. https://doi.org/10.1186/s12974-021-02267-z

    Article  CAS  Google Scholar 

  35. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, et al. (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  Google Scholar 

  36. Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23:1846–1847. https://doi.org/10.1093/bioinformatics/btm254

    Article  CAS  Google Scholar 

  37. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  Google Scholar 

  38. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209. https://doi.org/10.1093/nar/gkq1056

    Article  CAS  Google Scholar 

  39. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4. https://doi.org/10.7554/eLife.05005

  40. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, et al. (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169. https://doi.org/10.1093/nar/gkq1107

    Article  CAS  Google Scholar 

  41. Chen Y, Wang X (2020) miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 48:D127-d131. https://doi.org/10.1093/nar/gkz757

    Article  CAS  Google Scholar 

  42. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  Google Scholar 

  43. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  Google Scholar 

  44. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, et al. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607-d613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  Google Scholar 

  45. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-s4-s11

    Article  Google Scholar 

  46. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, et al. (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  Google Scholar 

  47. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, et al. (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129–2170. https://doi.org/10.1002/mds.22340

    Article  Google Scholar 

  48. P. W (2012) Global scales to stage disability in PD: the Hoehn and Yahr scale. Rating Scales Parkinsons Dis 115–22. https://doi.org/10.1093/med/9780199783106.003.0258

  49. Arevalo-Rodriguez I, Smailagic N, Roqué IFM, Ciapponi A, Sanchez-Perez E, Giannakou A, Pedraza OL, Bonfill Cosp X et al. (2015) Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2015:Cd010783. https://doi.org/10.1002/14651858.CD010783.pub2

  50. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  Google Scholar 

  51. Kraus TFJ, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA (2017) Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report. Mol Neurobiol 54:2869–2877. https://doi.org/10.1007/s12035-016-9854-x

    Article  CAS  Google Scholar 

  52. Coupland KG, Kim WS, Halliday GM, Hallupp M, Dobson-Stone C, Kwok JB (2016) Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson’s Disease. PLoS ONE 11:e0157924. https://doi.org/10.1371/journal.pone.0157924

    Article  CAS  Google Scholar 

  53. Moreno-García L, López-Royo Y, Calvo AC, Toivonen JM, de la Torre M, Moreno-Martínez L, Molina N, Aparicio P, Zaragoza P, et al. (2020) Competing endogenous RNA networks as biomarkers in neurodegenerative diseases. Int J Mol Sci 21. https://doi.org/10.3390/ijms21249582

  54. Zhang X, Feng S, Fan Y, Luo Y, Jin L, Li S (2020) Identifying a comprehensive ceRNA network to reveal novel targets for the pathogenesis of Parkinson’s disease. Front Neurol 11:810. https://doi.org/10.3389/fneur.2020.00810

    Article  Google Scholar 

  55. Zhao J, Geng L, Chen Y, Wu C (2020) SNHG1 promotes MPP(+)-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 53:1. https://doi.org/10.1186/s40659-019-0267-y

    Article  CAS  Google Scholar 

  56. Chen Q, Huang X, Li R (2018) lncRNA MALAT1/miR-205-5p axis regulates MPP(+)-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Transl Res 10:563–572

    CAS  Google Scholar 

  57. Cao B, Wang T, Qu Q, Kang T, Yang Q (2018) Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson’s disease via regulating miR-7/NLRP3 pathway. Neuroscience 388:118–127. https://doi.org/10.1016/j.neuroscience.2018.07.019

    Article  CAS  Google Scholar 

  58. Zhu Z, Huang P, Sun R, Li X, Li W, Gong W (2022) A novel long-noncoding RNA LncZFAS1 prevents MPP(+)-induced neuroinflammation through MIB1 activation. Mol Neurobiol 59:778–799. https://doi.org/10.1007/s12035-021-02619-z

    Article  CAS  Google Scholar 

  59. Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867–882. https://doi.org/10.1007/s00204-015-1472-2

    Article  CAS  Google Scholar 

  60. Cerri S, Mus L, Blandini F (2019) Parkinson’s Disease in women and men: what’s the difference? J Parkinsons Dis 9:501–515. https://doi.org/10.3233/jpd-191683

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jiahang Song and Dr. Yifang Hu for the experimental guidance and useful discussion of the work.

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20201117) and the National Science and Technology Innovation 2030: Major program of “Brain Science and Brain-Inspired Intelligence Research” (2021ZD0201807).

Author information

Authors and Affiliations

Authors

Contributions

Study design and manuscript draft: YDZ, YYT, and TH; experiment implementation: TH, JYZ, RRP, and TJ; data collection: XXF, QH, XXW, and PYG. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to You-Yong Tian or Ying-Dong Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

All the participants gave written informed consent. The research on human subjects was performed in accordance with the ethical standards of the Declaration of Helsinki and approved by the ethics committee of the Nanjing First Hospital (ethical permits KY20220124-06).

Consent for Publication

All the data is suitable for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (DOCX 77 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Zhao, JY., Pan, RR. et al. Dysregulation of Circulatory Levels of lncRNAs in Parkinson’s Disease. Mol Neurobiol 60, 317–328 (2023). https://doi.org/10.1007/s12035-022-03086-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03086-w

Keywords

Navigation