Skip to main content

Advertisement

Log in

Role of tRNA-Derived Fragments in Neurological Disorders: a Review

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

tRFs are small tRNA derived fragments that are emerging as novel therapeutic targets and regulatory molecules in the pathophysiology of various neurological disorders. These are derived from precursor or mature tRNA, forming different subtypes that have been reported to be involved in neurological disorders like stroke, Alzheimer’s, epilepsy, Parkinson’s, MELAS, autism, and Huntington’s disorder. tRFs were earlier believed to be random degradation debris of tRNAs. The significant variation in the expression level of tRFs in disease conditions indicates their salient role as key players in regulation of these disorders. Various animal studies are being carried out to decipher their exact role; however, more inputs are required to transform this research knowledge into clinical application. Future investigations also call for high-throughput technologies that could help to bring out the other hidden aspects of these entities. However, studies on tRFs require further research efforts to overcome the challenges posed in quantifying tRFs, their interactions with other molecules, and the exact mechanism of function. In this review, we are abridging the current understanding of tRFs, including their biogenesis, function, relevance in clinical therapies, and potential as diagnostic and prognostic biomarkers of these neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Polacek N, Ivanov P (2020) The regulatory world of tRNA fragments beyond canonical tRNA biology. RNA Biol 17:1057–1059

    Article  Google Scholar 

  2. Qin C et al (2020) Pathological significance of tRNA-derived small RNAs in neurological disorders. Neural Regen Res 15(2):212

    Article  CAS  Google Scholar 

  3. Xie Y et al (2020) Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 5(1):1–9

    Google Scholar 

  4. Yuan Y et al (2021) tRNA-derived fragments as new hallmarks of aging and age-related diseases. Aging Dis 12(5):1304

    Article  Google Scholar 

  5. Jia Y, Tan W, Zhou Y (2020) Transfer RNA-derived small RNAs: potential applications as novel biomarkers for disease diagnosis and prognosis. Ann Transl Med 8(17)

  6. Yamasaki S et al (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185(1):35–42

    Article  CAS  Google Scholar 

  7. Fagan SG, Helm M, Prehn JH (2021) tRNA-derived fragments: a new class of non-coding RNA with key roles in nervous system function and dysfunction. Prog Neurobiol 205:102118

    Article  CAS  Google Scholar 

  8. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell 75(5):843–854

    Article  CAS  Google Scholar 

  9. Kozomara A, Griffiths-Jones S (2010) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research 39(suppl_1):D152–D157

    Google Scholar 

  10. Kuscu C et al (2018) tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 24(8):1093–1105

    Article  CAS  Google Scholar 

  11. Keam SP et al (2017) tRNA-derived RNA fragments associate with human multisynthetase complex (MSC) and modulate ribosomal protein translation. J Proteome Res 16(2):413–420

    Article  CAS  Google Scholar 

  12. Cosentino C et al (2018) Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res 46(19):10302–10318

    Article  CAS  Google Scholar 

  13. Sarker G et al (2019) Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci 116(21):10547–10556

    Article  CAS  Google Scholar 

  14. Sharma U et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351(6271):391–396

    Article  CAS  Google Scholar 

  15. Kumar P, Kuscu C, Dutta A (2016) Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 41(8):679–689

    Article  CAS  Google Scholar 

  16. Chen Q et al (2021) Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 46(10):790–804

    Article  CAS  Google Scholar 

  17. Liu B et al (2021) Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 13(1):1–13

    Article  Google Scholar 

  18. Galli G, Hofstetter H, Birnstiel ML (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294(5842):626–631

    Article  CAS  Google Scholar 

  19. Zhu L et al (2018) tRNA-derived small non-coding RNAs in human disease. Cancer Lett 419:1–7

    Article  CAS  Google Scholar 

  20. Liapi E et al (2020) tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1867(3):118465

    Article  CAS  Google Scholar 

  21. Kim HK, Yeom J-H, Kay MA (2020) Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther 28(11):2340–2357

    Article  CAS  Google Scholar 

  22. Ogawa T et al (1999) A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science 283(5410):2097–2100

    Article  CAS  Google Scholar 

  23. Tomita K et al (2000) A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci 97(15):8278–8283

    Article  CAS  Google Scholar 

  24. Jiang Y et al (2002) Structural features of tRNALys favored by anticodon nuclease as inferred from reactivities of anticodon stem and loop substrate analogs. J Biol Chem 277(6):3836–3841

    Article  CAS  Google Scholar 

  25. Lu J et al (2008) Kluyveromyces lactis γ-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 36(4):1072–1080

    Article  CAS  Google Scholar 

  26. Chakravarty AK et al (2014) Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Cell Rep 7(2):339–347

    Article  CAS  Google Scholar 

  27. Thompson DM, Parker R (2009) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185(1):43–50

    Article  CAS  Google Scholar 

  28. Donovan J et al (2017) Rapid RNase L–driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA 23(11):1660–1671

    Article  CAS  Google Scholar 

  29. Lee SR, Collins K (2005) Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 280(52):42744–42749

    Article  CAS  Google Scholar 

  30. Wang Q et al (2013) Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 21(2):368–379

    Article  CAS  Google Scholar 

  31. Anderson P, Ivanov P (2014) tRNA fragments in human health and disease. FEBS Lett 588(23):4297–4304

    Article  CAS  Google Scholar 

  32. Dhahbi JM et al (2013) 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 14(1):1–14

    Article  Google Scholar 

  33. Lee YS et al (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649

    Article  CAS  Google Scholar 

  34. Li S, Xu Z, Sheng J (2018) tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes 9(5):246

    Article  Google Scholar 

  35. Cole C et al (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15(12):2147–2160

    Article  CAS  Google Scholar 

  36. Kumar P et al (2014) Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 12(1):1–14

    Article  CAS  Google Scholar 

  37. Reifur L et al (2012) Distinct subcellular localization of tRNA-derived fragments in the infective metacyclic forms of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 107:816–819

    Article  CAS  Google Scholar 

  38. Bikoff EK, Gefter M (1975) In vitro synthesis of transfer RNA. I. Purification of required components. J Biol Chem 250(16):6240–6247

    Article  CAS  Google Scholar 

  39. Goodarzi H et al (2015) Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161(4):790–802

    Article  CAS  Google Scholar 

  40. Maute RL et al (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci 110(4):1404–1409

    Article  CAS  Google Scholar 

  41. Babiarz JE et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Gene dev 22(20):2773–2785

    Article  CAS  Google Scholar 

  42. Li Z et al (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40(14):6787–6799

    Article  CAS  Google Scholar 

  43. Olvedy M et al (2016) A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget 7(17):24766

    Article  Google Scholar 

  44. Sobala A, Hutvagner G (2011) Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdisciplinary Reviews: RNA 2(6):853–862

    Article  CAS  Google Scholar 

  45. Hsieh L-C et al (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151(4):2120–2132

    Article  Google Scholar 

  46. Keam SP, Hutvagner G (2015) tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life 5(4):1638–1651

    Article  CAS  Google Scholar 

  47. Zhu P, Yu J, Zhou P (2020) Role of tRNA-derived fragments in cancer: novel diagnostic and therapeutic targets tRFs in cancer. Am J Cancer Res 10(2):393

    CAS  Google Scholar 

  48. Kim HK et al (2017) A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 552(7683):57–62

    Article  CAS  Google Scholar 

  49. Sobala A, Hutvagner G (2013) Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells. RNA Biol 10(4):553–563

    Article  CAS  Google Scholar 

  50. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108

    Article  CAS  Google Scholar 

  51. Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135(7):1201–1214

    Article  CAS  Google Scholar 

  52. Haussecker D et al (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16(4):673–695

    Article  CAS  Google Scholar 

  53. Hogg MC et al (2019) Elevation of plasma tRNA fragments precedes seizures in human epilepsy. J Clin Investig 129(7):2946–2951

    Article  Google Scholar 

  54. Gebetsberger J et al (2017) A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol 14(10):1364–1373

    Article  Google Scholar 

  55. Crabtree B et al (2007) Characterization of human angiogenin variants implicated in amyotrophic lateral sclerosis. Biochemistry 46(42):11810–11818

    Article  CAS  Google Scholar 

  56. Guy MP et al (2015) Defects in tRNA anticodon loop 2′-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1. Hum Mutat 36(12):1176–1187

    Article  CAS  Google Scholar 

  57. Greenway M et al (2004) A novel candidate region for ALS on chromosome 14q11. 2. Neurology 63(10):1936–1938

    Article  CAS  Google Scholar 

  58. Van Es MA et al (2011) Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann Neurol 70(6):964–973

    Article  Google Scholar 

  59. Bradshaw WJ et al (2017) Structural insights into human angiogenin variants implicated in Parkinson’s disease and Amyotrophic Lateral Sclerosis. Sci Rep 7(1):1–10

    Article  Google Scholar 

  60. Li P-F et al (2020) Integrative analysis of transcriptomes highlights potential functions of transfer-RNA-derived small RNAs in experimental intracerebral hemorrhage. Aging (Albany NY) 12(22):22794

    CAS  Google Scholar 

  61. Wu W et al (2021) tRNA-derived fragments in alzheimer’s disease: implications for new disease biomarkers and neuropathological mechanisms. J Alzheimers Dis 79(2):793–806

    Article  CAS  Google Scholar 

  62. McArdle H et al (2020) Quantification of tRNA fragments by electrochemical direct detection in small volume biofluid samples. Sci Rep 10(1):1–11

    Article  Google Scholar 

  63. Zhang S et al (2019) Identification of functional tRNA-derived fragments in senescence-accelerated mouse prone 8 brain. Aging (Albany NY) 11(22):10485

    Article  CAS  Google Scholar 

  64. Ludhiadch A, Vasudeva K, Munshi A (2020) Establishing molecular signatures of stroke focusing on omic approaches: a narrative review. Int J Neurosci 130(12):1250–1266

    Article  Google Scholar 

  65. Ekker MS et al (2019) Stroke incidence in young adults according to age, subtype, sex, and time trends. Neurology 92(21):e2444–e2454

    Article  CAS  Google Scholar 

  66. Kuźma E et al (2018) Stroke and dementia risk: a systematic review and meta-analysis. Alzheimers Dement 14(11):1416–1426

    Article  Google Scholar 

  67. Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci 21(20):7609

    Article  CAS  Google Scholar 

  68. Matz K et al (2006) Disorders of glucose metabolism in acute stroke patients: an underrecognized problem. Diabetes Care 29(4):792–797

    Article  CAS  Google Scholar 

  69. Campbell BC et al (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):1–22

    Article  Google Scholar 

  70. Nguyen TTM et al (2020) Circulating tRNA fragments as a novel biomarker class to distinguish acute stroke subtypes. Int J Mol Sci 22(1):135

    Article  Google Scholar 

  71. Winek K et al (2020) Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc Natl Acad Sci 117(51):32606–32616

    Article  CAS  Google Scholar 

  72. Nikolopoulou E et al (2017) Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144(4):552–566

    Article  CAS  Google Scholar 

  73. Zhang Z et al (2017) Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol 54(3):1874–1886

    Article  CAS  Google Scholar 

  74. Ke K et al (2014) Upregulation of EHD2 after intracerebral hemorrhage in adult rats. J Mol Neurosci 54(2):171–180

    Article  CAS  Google Scholar 

  75. Ronaldson PT, Davis TP (2015) Targeting transporters: promoting blood–brain barrier repair in response to oxidative stress injury. Brain Res 1623:39–52

    Article  CAS  Google Scholar 

  76. You Y et al (2016) Protective effects of PGC-1α via the mitochondrial pathway in rat brains after intracerebral hemorrhage. Brain Res 1646:34–43

    Article  CAS  Google Scholar 

  77. Yang G-Y et al (1994) Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 81(1):93–102

    Article  CAS  Google Scholar 

  78. Hanjin C et al (2018) Altered long noncoding RNA and messenger RNA expression in experimental intracerebral hemorrhage-a preliminary study. Cell Physiol Biochem 45(3):1284–1301

    Article  Google Scholar 

  79. Li P et al (2019) Systematic analysis of tRNA-derived small RNAs reveals novel potential therapeutic targets of traditional Chinese medicine (Buyang-Huanwu-Decoction) on intracerebral hemorrhage. Int J Biol Sci 15(4):895

    Article  CAS  Google Scholar 

  80. Luo L, Deng S, Yi J, Zhou S, She Y, Liu B (2017) Buyang huanwu decoction ameliorates poststroke depression via promoting neurotrophic pathway mediated neuroprotection and neurogenesis. Evid Based Complement Alternat Med 2017:1–10

    Google Scholar 

  81. Pan R et al (2017) Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats. BMC Complement Altern Med 17(1):1–11

    Article  Google Scholar 

  82. Sun M, Shinoda Y, Fukunaga K (2019) KY-226 protects blood–brain barrier function through the Akt/FoxO1 signaling pathway in brain ischemia. Neuroscience 399:89–102

    Article  CAS  Google Scholar 

  83. Li Z et al (2016) Foxo1-mediated inflammatory response after cerebral hemorrhage in rats. Neurosci Lett 629:131–136

    Article  CAS  Google Scholar 

  84. Li Q et al (2018) Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. Front Neurol 9:581

    Article  Google Scholar 

  85. Wang T et al (2022) Prediction and validation of potential molecular targets for the combination of Astragalus membranaceus and Angelica sinensis in the treatment of atherosclerosis based on network pharmacology. Medicine 101(26):e29762

    Article  CAS  Google Scholar 

  86. Zhong Q et al (2016) Interleukin-23 secreted by activated macrophages drives γδT cell production of interleukin-17 to aggravate secondary injury after intracerebral hemorrhage. J Am Heart Assoc 5(10):e004340

    Article  Google Scholar 

  87. Woiciechowsky C et al (2002) Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients. J Trauma Acute Care Surg 52(2):339–345

    Article  CAS  Google Scholar 

  88. Kossmann T et al (1995) Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock (Augusta, Ga) 4(5):311–317

    Article  CAS  Google Scholar 

  89. Feinberg MW et al (2005) Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem 280(46):38247–38258

    Article  CAS  Google Scholar 

  90. Rosas-Ballina M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052):98–101

    Article  CAS  Google Scholar 

  91. Gliem M et al (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71(6):743–752

    Article  CAS  Google Scholar 

  92. Meisel C et al (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6(10):775–786

    Article  CAS  Google Scholar 

  93. Kuriakose T et al (2016) ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science immunology 1(2):aag2045–aag2045

    Article  Google Scholar 

  94. Glal D et al (2018) ATF3 sustains IL-22-induced STAT3 phosphorylation to maintain mucosal immunity through inhibiting phosphatases. Front Immunol 9:2522

    Article  Google Scholar 

  95. Cao Y et al (2021) Increased expression of fragmented tRNA promoted neuronal necrosis. Cell Death Dis 12(9):1–15

    Article  Google Scholar 

  96. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378

    Article  Google Scholar 

  97. Albayram O et al (2017) Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun 8(1):1–17

    Article  CAS  Google Scholar 

  98. Siddiqui EU et al (2019) Clinical outcome of paediatric patients with traumatic brain injury (TBI) receiving 3% hypertonic saline (HTS) in the emergency room of a tertiary care hospital. J Pak Med Assoc 69(11):1741–1745

    Google Scholar 

  99. Liu Z-M et al (2018) RIP3 deficiency protects against traumatic brain injury (TBI) through suppressing oxidative stress, inflammation and apoptosis: dependent on AMPK pathway. Biochem Biophys Res Commun 499(2):112–119

    Article  CAS  Google Scholar 

  100. Fullerton HJ, Johnston SC, Smith WS (2001) Arterial dissection and stroke in children. Neurology 57(7):1155–1160

    Article  CAS  Google Scholar 

  101. Lu D et al (2004) Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J Neurosurg 101(5):813–821

    Article  CAS  Google Scholar 

  102. Chen Y-H, Kang J-H, Lin H-C (2011) Patients with traumatic brain injury: population-based study suggests increased risk of stroke. Stroke 42(10):2733–2739

    Article  Google Scholar 

  103. Burke JF et al (2013) Traumatic brain injury may be an independent risk factor for stroke. Neurology 81(1):33–39

    Article  CAS  Google Scholar 

  104. Agostini M et al (2013) Cervical arterial dissection and ischaemic stroke in children: two cases. Acta Paediatr 102(4):e142-3

    Article  Google Scholar 

  105. Fisher CM, Ojemann RG, Roberson GH (1978) Spontaneous dissection of cervico-cerebral arteries. Can J Neurol Sci 5(1):9–19

    Article  CAS  Google Scholar 

  106. Tutwiler V et al (2017) Contraction of blood clots is impaired in acute ischemic stroke. Arterioscler Thromb Vasc Biol 37(2):271–279

    Article  CAS  Google Scholar 

  107. Hautecloque G et al (2021) Multifocal and Microvascular Involvement in Ischemic Stroke During COVID-19: A Cohort Study With Comparison With Non-COVID-19 Stroke. Front Neurol 12:1808

    Article  Google Scholar 

  108. Albrecht JS et al (2015) Stroke incidence following traumatic brain injury in older adults. J Head Trauma Rehabil 30(2):E62

    Article  Google Scholar 

  109. Xu X-J et al (2022) Genome-wide interrogation of transfer RNA-derived small RNAs in a mouse model of traumatic brain injury. Neural Regen Res 17(2):386

    Article  CAS  Google Scholar 

  110. Choi Y et al (2019) NGL-1/LRRC4C deletion moderately suppresses hippocampal excitatory synapse development and function in an input-independent manner. Front Mol Neurosci 12:119

    Article  CAS  Google Scholar 

  111. Cao-Ehlker X et al (2013) Up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) by specific interaction with K+ channel tetramerization domain-containing protein 3 (KCTD3). J Biol Chem 288(11):7580–7589

    Article  CAS  Google Scholar 

  112. Marshall M et al (2012) Characterization of the functional role of VAMP8 in granule exocytosis of T lymphocytes (69.12). The Journal of Immunology 188(1 Supplement):69.12-69.12

    Article  Google Scholar 

  113. Estevao C et al (2021) CCL4 induces inflammatory signalling and barrier disruption in the neurovascular endothelium. Brain, behavior, & immunity-health 18:100370

    Article  CAS  Google Scholar 

  114. Puhakka N et al (2022) Transfer RNA-Derived Fragments and isomiRs Are Novel Components of Chronic TBI-Induced Neuropathology. Biomedicines 10(1):136

    Article  CAS  Google Scholar 

  115. Yang Z-Y et al (2022) Systematic analysis of tRNA-derived small RNAs reveals therapeutic targets of Xuefu Zhuyu decoction in the cortexes of experimental traumatic brain injury. Phytomedicine 102:154168

    Article  CAS  Google Scholar 

  116. Xing Z et al (2016) Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci Rep 6(1):1–14

    Google Scholar 

  117. Wang Z (2010) 108 cases of clinical observation of Xuefu Zhuyu on patients with post-craniocerebral traumatic syndrome. Shanxi Zhong Yi 31:850–850

    CAS  Google Scholar 

  118. Zhou J et al (2017) Xuefu zhuyu decoction improves cognitive impairment in experimental traumatic brain injury via synaptic regulation. Oncotarget 8(42):72069

    Article  Google Scholar 

  119. Li D et al (2019) Exosomes from MiR-21-5p-increased neurons play a role in neuroprotection by suppressing Rab11a-mediated neuronal autophagy in vitro after traumatic brain injury. Medical science monitor: international medical journal of experimental and clinical research 25:1871

    Article  CAS  Google Scholar 

  120. Chen T, Zhu J, Wang YH (2020) RNF216 mediates neuronal injury following experimental subarachnoid hemorrhage through the Arc/Arg3. 1-AMPAR pathway. The FASEB Journal 34(11):15080–15092

    Article  CAS  Google Scholar 

  121. Pia S, Lui F (2022) Melas Syndrome, in StatPearls. StatPearls Publishing

  122. Meseguer S et al (2019) The MELAS mutation m. 3243A> G alters the expression of mitochondrial tRNA fragments. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1866(9):1433–1449

    Article  CAS  Google Scholar 

  123. Meseguer S, Rubio M-P (2022) mt tRFs, new players in MELAS disease. Front Physiol 13:800171

    Article  Google Scholar 

  124. Lauretti E, Dabrowski K, Praticò D (2021) The neurobiology of non-coding RNAs and Alzheimer’s disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 71:101425

    Article  CAS  Google Scholar 

  125. Lu H, Liu L, Han S, Wang B, Qin J, Bu K, ... Liu X (2021) Expression of tiRNA and tRF in APP/PS1 transgenic mice and the change of related proteins expression. Ann Transl Med 9(18):1457

  126. Delekate A et al (2014) Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat Commun 5(1):1–14

    Article  Google Scholar 

  127. Gouet C et al (2012) On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII. PLoS One 7(11):e49293

    Article  CAS  Google Scholar 

  128. Astudillo D et al (2020) CaMKII inhibitor 1 (CaMK2N1) mRNA is upregulated following LTP induction in hippocampal slices. Synapse 74(10):e22158

    Article  CAS  Google Scholar 

  129. Jovanovic K et al (2015) Novel patented therapeutic approaches targeting the 37/67 kDa laminin receptor for treatment of cancer and Alzheimer’s disease. Expert Opin Ther Pat 25(5):567–582

    Article  CAS  Google Scholar 

  130. Zhang Z-Y et al (2021) Genome-Wide analysis of hippocampal transfer RNA-derived small RNAs identifies new potential therapeutic targets of Bushen Tiansui formula against Alzheimer’s disease. J Integr Med 19(2):135–143

    Article  CAS  Google Scholar 

  131. Hui S et al (2017) Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer’s disease. Neural Regen Res 12(10):1680

    Article  CAS  Google Scholar 

  132. Xia Z et al (2017) Naoling decoction restores cognitive function by inhibiting the neuroinflammatory network in a rat model of Alzheimer’s disease. Oncotarget 8(26):42648

    Article  Google Scholar 

  133. Villa C, Lavitrano M, Combi R (2019) Long non-coding RNAs and related molecular pathways in the pathogenesis of epilepsy. Int J Mol Sci 20(19):4898

    Article  CAS  Google Scholar 

  134. Kuo M-C et al (2021) The role of noncoding RNAs in Parkinson’s disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 28(1):1–28

    Article  Google Scholar 

  135. Liu J et al (2008) Damage to the nigrostriatal system in the MPTP-treated SAMP8 mouse. Neurosci Lett 448(2):184–188

    Article  CAS  Google Scholar 

  136. Ming F et al (2020) The PARK2 mutation associated with Parkinson’s disease enhances the vulnerability of peripheral blood lymphocytes to paraquat. Biomed Res Int 2020:4658109

    Article  Google Scholar 

  137. Narendra D et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    Article  CAS  Google Scholar 

  138. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273

    Article  CAS  Google Scholar 

  139. Kon T et al (2019) Immunoreactivity of myelin-associated oligodendrocytic basic protein in Lewy bodies. Neuropathology 39(4):279–285

    Article  CAS  Google Scholar 

  140. Wang Y et al (2002) A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proc Natl Acad Sci 99(22):14464–14469

    Article  CAS  Google Scholar 

  141. Shen J (2010) Impaired neurotransmitter release in Alzheimer’s and Parkinson’s diseases. Neurodegener Dis 7(1–3):80–83

    Article  CAS  Google Scholar 

  142. Ziats CA, Patterson WG, Friez M (2021) Syndromic autism revisited: review of the literature and lessons learned. Pediatr Neurol 114:21–25

    Article  Google Scholar 

  143. Su Z et al (2020) tRNA-derived fragments and microRNAs in the maternal-fetal interface of a mouse maternal-immune-activation autism model. RNA Biol 17(8):1183–1195

    Article  CAS  Google Scholar 

  144. Fjodorova M et al (2019) CTIP2-Regulated Reduction in PKA-Dependent DARPP32 Phosphorylation in Human Medium Spiny Neurons: Implications for Huntington Disease. Stem Cell Reports 13(3):448–457

    Article  CAS  Google Scholar 

  145. Ludford-Menting MJ et al (2002) A functional interaction between CD46 and DLG4: a role for DLG4 in epithelial polarization. J Biol Chem 277(6):4477–4484

    Article  CAS  Google Scholar 

  146. Saavedra A et al (2011) Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. J Neurosci 31(22):8150–8162

    Article  CAS  Google Scholar 

  147. Nakamura Y et al (2021) IL1B triggers inflammatory cytokine production in bovine oviduct epithelial cells and induces neutrophil accumulation via CCL2. Am J Reprod Immunol 85(5):e13365

    Article  CAS  Google Scholar 

  148. Khalifa AS et al (2022) Genetic variations of tumor necrosis factor-α and prostaglandin-endoperoxide synthase 2 genes among Egyptian patients with type 2 diabetes mellitus and diabetic nephropathy. Gene Reports 29:101678

  149. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10(1):45–65

    Article  CAS  Google Scholar 

  150. Creus-Muncunill J et al (2021) Huntington’s disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathol 141(4):565–584

    Article  CAS  Google Scholar 

  151. Ambros V et al (2003) A uniform system for microRNA annotation. RNA 9(3):277–279

    Article  CAS  Google Scholar 

  152. Holmes AD et al (2022) A standardized ontology for naming tRNA-derived RNAs based on molecular origin. bioRxiv 1–16

Download references

Funding

Financial support is provided by ICMR, New Delhi (RFC No. (p-64) NCD/Adhoc/139/2020–21), DST-FIST (SR/FST/LS-I/2017/49) and to Mr. Abhilash Ludhiadch (Award No-09/ 1051(0029)/2 019-EMR-1) from the Council for Scientific and Industrial Research (CSIR) India.

Author information

Authors and Affiliations

Authors

Contributions

Blessy Aksa Mathew (BAM) and Madhumitha Katta (MK), conceived the idea of compiling the details about tRFs. BAM and MK carried out the literature survey. Abhilash Ludhiadch (AL), Paramdeep Singh (PS), and Anjana Munshi (AM) compiled, verified, and edited the manuscript.

Corresponding author

Correspondence to Anjana Munshi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, B.A., Katta, M., Ludhiadch, A. et al. Role of tRNA-Derived Fragments in Neurological Disorders: a Review. Mol Neurobiol 60, 655–671 (2023). https://doi.org/10.1007/s12035-022-03078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03078-w

Keywords

Navigation