Skip to main content

Advertisement

Log in

BMSC-Derived Exosomal Egr2 Ameliorates Ischemic Stroke by Directly Upregulating SIRT6 to Suppress Notch Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Exosomes generated by BMSCs contribute to functional recovery in ischemic stroke. However, the regulatory mechanism is largely unknown. Exosomes were isolated from BMSCs. Tube formation, MTT, TUNEL, and flow cytometry assays were applied to examine cell angiogenesis, viability, and apoptosis. Protein and DNA interaction was evaluated by ChIP and luciferase assays. LDH release into the culture medium was examined. Infarction area was evaluated by TTC staining. Immunofluorescence staining was applied to examine CD31 expression. A mouse model of MCAO/R was established. BMSC-derived exosomes attenuated neuronal cell damage and facilitated angiogenesis of brain endothelial cells in response to OGD/R, but these effects were abolished by the knockdown of Egr2. Egr2 directly bound to the promoter of SIRT6 to promote its expression. The incompetency of Egr2-silencing exosomes was reversed by overexpression of SIRT6. Furthermore, SIRT6 inhibited Notch signaling via suppressing Notch1. Overexpression of SIRT6 and inhibition of Notch signaling improved cell injury and angiogenesis in OGD/R-treated cells. BMSC-derived exosomal Egr2 ameliorated MCAO/R-induced brain damage via upregulating SIRT6 to suppress Notch signaling in mice. BMSC-derived exosomes ameliorate OGD/R-induced injury and MCAO/R-caused cerebral damage in mice by delivering Egr2 to promote SIRT6 expression and subsequently suppress Notch signaling. Our study provides a potential exosome-based therapy for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Campbell BCV, Khatri P (2020) Stroke Lancet 396(10244):129–142. https://doi.org/10.1016/S0140-6736(20)31179-X

    Article  Google Scholar 

  2. Li G, Yu F, Lei T, Gao H, Li P, Sun Y, Huang H, Mu Q (2016) Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies. Neural Regen Res 11(6):1015–1024. https://doi.org/10.4103/1673-5374.184506

    Article  CAS  Google Scholar 

  3. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73(6):778–786. https://doi.org/10.1002/jnr.10691

    Article  CAS  Google Scholar 

  4. Keimpema E, Fokkens MR, Nagy Z, Agoston V, Luiten PG, Nyakas C, Boddeke HW, Copray JC (2009) Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol 35(1):89–102. https://doi.org/10.1111/j.1365-2990.2008.00961.x

    Article  CAS  Google Scholar 

  5. Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, Sibiak R, Piotrowska-Kempisty H, Izycki D, Bukowska D, Antosik P, Shibli JA, Dyszkiewicz-Konwinska M, Kempisty B (2020) Inclusion Biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med 9(2). https://doi.org/10.3390/jcm9020436

  6. Li X, Zhang Y, Wang Y, Zhao D, Sun C, Zhou S, Xu D, Zhao J (2020) Exosomes derived from CXCR4-overexpressing BMSC promoted activation of microvascular endothelial cells in cerebral ischemia/reperfusion injury. Neural Plast 2020:8814239. https://doi.org/10.1155/2020/8814239

    Article  CAS  Google Scholar 

  7. Xiao Y, Geng F, Wang G, Li X, Zhu J, Zhu W (2018) Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J Cell Biochem. https://doi.org/10.1002/jcb.27519

    Article  Google Scholar 

  8. Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW (2014) Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci 105(11):1384–1392. https://doi.org/10.1111/cas.12534

    Article  CAS  Google Scholar 

  9. Zeng T, Wang D, Chen J, Tian Y, Cai X, Peng H, Zhu L, Huang A, Tang H (2017) LncRNA-AF113014 promotes the expression of Egr2 by interaction with miR-20a to inhibit proliferation of hepatocellular carcinoma cells. PLoS One 12(5):e0177843. https://doi.org/10.1371/journal.pone.0177843

    Article  CAS  Google Scholar 

  10. Xue H, Liu J, Shi L, Yang H (2020) Overexpressed microRNA-539-5p inhibits inflammatory response of neurons to impede the progression of cerebral ischemic injury by histone deacetylase 1. Am J Physiol Cell Physiol 319(2):C381–C391. https://doi.org/10.1152/ajpcell.00576.2019

    Article  CAS  Google Scholar 

  11. Niu RN, Shang XP, Teng JF (2018) Overexpression of Egr2 and Egr4 protects rat brains against ischemic stroke by downregulating JNK signaling pathway. Biochimie 149:62–70. https://doi.org/10.1016/j.biochi.2018.03.010

    Article  CAS  Google Scholar 

  12. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  Google Scholar 

  13. Tasselli L, Zheng W, Chua KF (2017) SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab: TEM 28(3):168–185. https://doi.org/10.1016/j.tem.2016.10.002

    Article  CAS  Google Scholar 

  14. Liberale L, Gaul DS, Akhmedov A, Bonetti NR, Nageswaran V, Costantino S, Pahla J, Weber J, Fehr V, Vdovenko D, Semerano A, Giacalone G, Kullak-Ublick GA, Sessa M, Eriksson U, Paneni F, Ruschitzka F, Montecucco F, Beer JH, Luscher TF, Matter CM, Camici GG (2020) Endothelial SIRT6 blunts stroke size and neurological deficit by preserving blood-brain barrier integrity: a translational study. Eur Heart J 41(16):1575–1587. https://doi.org/10.1093/eurheartj/ehz712

    Article  CAS  Google Scholar 

  15. Zhang W, Wei R, Zhang L, Tan Y, Qian C (2017) Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neuroscience 366:95–104. https://doi.org/10.1016/j.neuroscience.2017.09.035

    Article  CAS  Google Scholar 

  16. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY, Li CJ (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46(4):1650–1667. https://doi.org/10.1159/000489241

    Article  CAS  Google Scholar 

  17. Amruta N, Bix G (2021) ATN-161 ameliorates ischemia/reperfusion-induced oxidative stress, fibro-inflammation, mitochondrial damage, and apoptosis-mediated tight junction disruption in bEnd.3 cells. Inflammation 44(6):2377–2394. https://doi.org/10.1007/s10753-021-01509-9

    Article  CAS  Google Scholar 

  18. Pang D, Wang L, Dong J, Lai X, Huang Q, Milner R, Li L (2018) Integrin alpha5beta1-Ang1/Tie2 receptor cross-talk regulates brain endothelial cell responses following cerebral ischemia. Exp Mol Med 50(9):1–12. https://doi.org/10.1038/s12276-018-0145-7

    Article  CAS  Google Scholar 

  19. Wu JY, Li M, Cao LJ, Sun ML, Chen D, Ren HG, Xia Q, Tao ZT, Qin ZH, Hu QS, Wang GH (2015) Protease Omi cleaving Hax-1 protein contributes to OGD/R-induced mitochondrial damage in neuroblastoma N2a cells and cerebral injury in MCAO mice. Acta Pharmacol Sin 36(9):1043–1052. https://doi.org/10.1038/aps.2015.50

    Article  CAS  Google Scholar 

  20. Huang S, Xu L, Sun Y, Wu T, Wang K, Li G (2015) An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Transl 3(1):26–33. https://doi.org/10.1016/j.jot.2014.07.005

    Article  Google Scholar 

  21. Qian YR, Lee MJ, Hwang S, Kook JH, Kim JK, Bae CS (2010) Neuroprotection by valproic acid in mouse models of permanent and transient focal cerebral ischemia. Korean J Physiol Pharmacol 14(6):435–440. https://doi.org/10.4196/kjpp.2010.14.6.435

    Article  CAS  Google Scholar 

  22. Song Y, Li Z, He T, Qu M, Jiang L, Li W, Shi X, Pan J, Zhang L, Wang Y, Zhang Z, Tang Y, Yang GY (2019) M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 9(10):2910–2923. https://doi.org/10.7150/thno.30879

    Article  CAS  Google Scholar 

  23. Lv MH, Li S, Jiang YJ, Zhang W (2020) The Sphkl/SlP pathway regulates angiogenesis via NOS/NO synthesis following cerebral ischemia-reperfusion. CNS Neurosci Ther 26(5):538–548. https://doi.org/10.1111/cns.13275

    Article  CAS  Google Scholar 

  24. Sui S, Sun L, Zhang W, Li J, Han J, Zheng J, Xin H (2021) LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling. Cell Mol Neurobiol 41(6):1311–1324. https://doi.org/10.1007/s10571-020-00904-4

    Article  CAS  Google Scholar 

  25. Wang C, Qu Y, Suo R, Zhu Y (2019) Long non-coding RNA MALAT1 regulates angiogenesis following oxygen-glucose deprivation/reoxygenation. J Cell Mol Med 23(4):2970–2983. https://doi.org/10.1111/jcmm.14204

    Article  CAS  Google Scholar 

  26. Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z, Wei X, Zhang Y, Sun Y, Zhou Z, Su H, Zhang C, Li N, Gao C, Peng J, Yi F (2017) Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun 8(1):413. https://doi.org/10.1038/s41467-017-00498-4

    Article  CAS  Google Scholar 

  27. Arumugam TV, Baik SH, Balaganapathy P, Sobey CG, Mattson MP, Jo DG (2018) Notch signaling and neuronal death in stroke. Prog Neurobiol 165–167:103–116. https://doi.org/10.1016/j.pneurobio.2018.03.002

    Article  CAS  Google Scholar 

  28. Dai G, Deng S, Guo W, Yu L, Yang J, Zhou S, Gao T (2019) Notch pathway inhibition using DAPT, a gamma-secretase inhibitor (GSI), enhances the antitumor effect of cisplatin in resistant osteosarcoma. Mol Carcinog 58(1):3–18. https://doi.org/10.1002/mc.22873

    Article  CAS  Google Scholar 

  29. Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, Pandian J, Feigin V (2019) World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int J Stroke 14(8):806–817. https://doi.org/10.1177/1747493019881353

    Article  Google Scholar 

  30. Yang Y, Shi YZ, Zhang N, Wang S, Ungvari GS, Ng CH, Wang YL, Zhao XQ, Wang YJ, Wang CX, Xiang YT (2016) The disability rate of 5-year post-stroke and its correlation factors: a national survey in China. PLoS One 11(11):e0165341. https://doi.org/10.1371/journal.pone.0165341

    Article  CAS  Google Scholar 

  31. Mazighi M, Chaudhry SA, Ribo M, Khatri P, Skoloudik D, Mokin M, Labreuche J, Meseguer E, Yeatts SD, Siddiqui AH, Broderick J, Molina CA, Qureshi AI, Amarenco P (2013) Impact of onset-to-reperfusion time on stroke mortality: a collaborative pooled analysis. Circulation 127(19):1980–1985. https://doi.org/10.1161/CIRCULATIONAHA.112.000311

    Article  Google Scholar 

  32. Khan H, Pan JJ, Li Y, Zhang Z, Yang GY (2021) Native and bioengineered exosomes for ischemic stroke therapy. Front Cell Dev Biol 9:619565. https://doi.org/10.3389/fcell.2021.619565

    Article  Google Scholar 

  33. Huang Y, He B, Wang L, Yuan B, Shu H, Zhang F, Sun L (2020) Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther 11(1):496. https://doi.org/10.1186/s13287-020-02005-x

    Article  CAS  Google Scholar 

  34. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z (2019) Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 13:71. https://doi.org/10.1186/s13036-019-0193-0

    Article  CAS  Google Scholar 

  35. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715. https://doi.org/10.1038/jcbfm.2013.152

    Article  CAS  Google Scholar 

  36. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K (2020) Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 17(1):46. https://doi.org/10.1186/s12974-020-1725-8

    Article  CAS  Google Scholar 

  37. Ueno Y, Hira K, Miyamoto N, Kijima C, Inaba T, Hattori N (2020) Pleiotropic effects of exosomes as a therapy for stroke recovery. Int J Mol Sci 21(18):6894–6909. https://doi.org/10.3390/ijms21186894

  38. Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31(4):477–510. https://doi.org/10.1016/s0197-0186(96)00136-2

    Article  CAS  Google Scholar 

  39. Herdegen T, Kiessling M, Bele S, Bravo R, Zimmermann M, Gass P (1993) The KROX-20 transcription factor in the rat central and peripheral nervous systems: novel expression pattern of an immediate early gene-encoded protein. Neuroscience 57(1):41–52. https://doi.org/10.1016/0306-4522(93)90110-2

    Article  CAS  Google Scholar 

  40. Tamama K, Barbeau DJ (2012) Early growth response genes signaling supports strong paracrine capability of mesenchymal stem cells. Stem cells Int 2012:428403. https://doi.org/10.1155/2012/428403

    Article  CAS  Google Scholar 

  41. Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J (2018) MiR-377 Regulates inflammation and angiogenesis in rats after cerebral ischemic injury. J Cell Biochem 119(1):327–337. https://doi.org/10.1002/jcb.26181

    Article  CAS  Google Scholar 

  42. Ghislain J, Charnay P (2006) Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Rep 7(1):52–58. https://doi.org/10.1038/sj.embor.7400573

    Article  CAS  Google Scholar 

  43. Nagarajan R, Svaren J, Le N, Araki T, Watson M, Milbrandt J (2001) EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30(2):355–368. https://doi.org/10.1016/s0896-6273(01)00282-3

    Article  CAS  Google Scholar 

  44. Lee OH, Kim J, Kim JM, Lee H, Kim EH, Bae SK, Choi Y, Nam HS, Heo JH (2013) Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia. Biochem Biophys Res Commun 438(2):388–394. https://doi.org/10.1016/j.bbrc.2013.07.085

    Article  CAS  Google Scholar 

  45. He T, Shang J, Gao C, Guan X, Chen Y, Zhu L, Zhang L, Zhang C, Zhang J, Pang T (2021) A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sinica B 11(3):708–726. https://doi.org/10.1016/j.apsb.2020.11.002

    Article  CAS  Google Scholar 

  46. Yang Z, Huang Y, Zhu L, Yang K, Liang K, Tan J, Yu B (2021) SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1alpha and reactive oxygen species. Cell Death Dis 12(1):77. https://doi.org/10.1038/s41419-020-03372-2

    Article  CAS  Google Scholar 

  47. Edatt L, Poyyakkara A, Raji GR, Ramachandran V, Shankar SS, Kumar VBS (2019) Role of Sirtuins in Tumor Angiogenesis. Front Oncol 9:1516. https://doi.org/10.3389/fonc.2019.01516

    Article  Google Scholar 

  48. Arboleda-Velasquez JF, Zhou Z, Shin HK, Louvi A, Kim HH, Savitz SI, Liao JK, Salomone S, Ayata C, Moskowitz MA, Artavanis-Tsakonas S (2008) Linking Notch signaling to ischemic stroke. Proc Natl Acad Sci USA 105(12):4856–4861. https://doi.org/10.1073/pnas.0709867105

    Article  Google Scholar 

  49. Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, Mughal MR, Ouyang X, Miele L, Magnus T, Poosala S, Granger DN, Mattson MP (2006) Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med 12(6):621–623. https://doi.org/10.1038/nm1403

    Article  CAS  Google Scholar 

  50. Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H, Chan SL (2011) Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke 42(9):2589–2594. https://doi.org/10.1161/STROKEAHA.111.614834

    Article  CAS  Google Scholar 

  51. Marumo T, Takagi Y, Muraki K, Hashimoto N, Miyamoto S, Tanigaki K (2013) Notch signaling regulates nucleocytoplasmic Olig2 translocation in reactive astrocytes differentiation after ischemic stroke. Neurosci Res 75(3):204–209. https://doi.org/10.1016/j.neures.2013.01.006

    Article  CAS  Google Scholar 

  52. Lu A, Wang L, Qian L (2015) The role of eNOS in the migration and proliferation of bone-marrow derived endothelial progenitor cells and in vitro angiogenesis. Cell Biol Int 39(4):484–490. https://doi.org/10.1002/cbin.10405

    Article  CAS  Google Scholar 

  53. Yadav UC, Srivastava SK, Ramana KV (2012) Prevention of VEGF-induced growth and tube formation in human retinal endothelial cells by aldose reductase inhibition. J Diabetes Complications 26(5):369–377. https://doi.org/10.1016/j.jdiacomp.2012.04.017

    Article  Google Scholar 

  54. Song MY, Yi F, Xiao H, Yin J, Huang Q, Xia J, Yin XM, Wen YB, Zhang L, Liu YH, Xiao B, Gu WP (2022) Energy restriction induced SIRT6 inhibits microglia activation and promotes angiogenesis in cerebral ischemia via transcriptional inhibition of TXNIP. Cell Death Dis 13(5):449. https://doi.org/10.1038/s41419-022-04866-x

    Article  CAS  Google Scholar 

  55. Wang Y, Mao J, Li X, Wang B, Zhou X (2022) lncRNA HOTAIR mediates OGD/R-induced cell injury and angiogenesis in a EZH2-dependent manner. Exp Ther Med 23(1):99. https://doi.org/10.3892/etm.2021.11022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by the National Natural Science Foundation of China-Long non-coding RNA regulates the direction of neural stem cell differentiation (project number: 81760234) and Hainan Province Clinical Medical Center (project number: LCYX202107).

Author information

Authors and Affiliations

Authors

Contributions

Rongjun Xiao: Conceptualization, writing—original draft preparation, investigation, validation, visualization, methodology.

Qingsong Wang: Methodology, data curation.

Jun Peng: Software.

Zhengtao Yu: Data curation.

Jikun Zhang: Software.

Ying Xia: Conceptualization, writing—original draft preparation, supervision, writing—reviewing and editing.

Corresponding author

Correspondence to Ying Xia.

Ethics declarations

Ethics Approval and Consent to Participate

All mouse-related experiments were approved by the Animal Care and Use Committee of Haikou people’s Hospital.

Consent for Publication

The informed consent obtained from study participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13197 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Wang, Q., Peng, J. et al. BMSC-Derived Exosomal Egr2 Ameliorates Ischemic Stroke by Directly Upregulating SIRT6 to Suppress Notch Signaling. Mol Neurobiol 60, 1–17 (2023). https://doi.org/10.1007/s12035-022-03037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03037-5

Keywords

Navigation