Skip to main content

Advertisement

Log in

Hotair and Malat1 Long Noncoding RNAs Regulate Bdnf Expression and Oligodendrocyte Precursor Cell Differentiation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophins family with well-known roles in neural development, differentiation, survival, and synaptic plasticity; however, it has not been explained thoroughly how the expression of this critical gene is regulated. To reveal some aspects of Bdnf gene regulation, here it was explored whether metastasis-associated lung adenocarcinoma transcript 1 (Malat1) and HOX transcript antisense RNA (Hotair) lncRNAs play roles in the regulation of Bdnf expression level, the effect of fingolimod treatment on downstream pathways, and oligodendrocyte precursor cell (OPC) maturation. First, in rat primary glial culture, the effect of Hotair and Malat1 was investigated on Bdnf expression using downregulation by specific DNAzymes. Then, immunostaining and RT-qPCR assays were employed to assess the functions of fingolimod and lncRNAs on OPC maturation. The results demonstrated that Bdnf was significantly correlated to Hotair and Malat1 lncRNAs in glial cells. Also, a strong correlation was observed between these two lncRNAs in glial culture and isolated OPCs. Fingolimod treatment coordinated lncRNAs' role on Bdnf expression in glial cells and enhanced OPC myelination three times compared to control. Furthermore, results suggested that Malat1 may have a role in the last stages of the intrinsic oligodendrocyte (OL) myelination regardless of fingolimod treatment. As BDNF is involved in brain development, survival, and functions, understanding the regulatory mechanism behind BDNF expression leads to a better comprehension of the pathogenesis of the neurodegenerative disorder and designing more effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding authors.

Code availability

Not applicable.

Abbreviations

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

ceRNA:

Competitive endogenous RN

CNS:

Central nervous system

EGF:

Epidermal growth factor

HOTAIR:

HOX transcript antisense RNA

IGF-1:

Insulin-like growth factor 1

lncRNA:

Long noncoding RNAs

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

MREs:

MicroRNA-binding sites

OL:

Oligodendrocyte

OPC:

Oligodendrocyte precursor cell

PDGF:

Platelet-derived growth factor

PLL:

Poly-L-lysine

T3:

Triiodo-L-thyronine

References

  1. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363

    Article  CAS  Google Scholar 

  2. Giacobbo BL, Doorduin J, Klein HC et al (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56:3295–3312

    Article  Google Scholar 

  3. Ishii T, Warabi E, Mann GE (2019) Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis. Free Radic Biol Med 133:169–178

    Article  CAS  Google Scholar 

  4. Fontanesi C, Kvint S, Frazzitta G et al (2016) Intensive rehabilitation enhances lymphocyte BDNF-TrkB signaling in patients with Parkinson’s disease. Neurorehabil Neural Repair 30:411–418

    Article  Google Scholar 

  5. Fletcher JL, Wood RJ, Nguyen J et al (2018) Targeting TrkB with a brain-derived neurotrophic factor mimetic promotes myelin repair in the brain. J Neurosci 0487–18. https://doi.org/10.1523/JNEUROSCI.0487-18.2018

  6. Fletcher JL, Murray SS, Xiao J (2018) Brain-derived neurotrophic factor in central nervous system myelination: a new mechanism to promote myelin plasticity and repair. Int J Mol Sci 19:4131

    Article  Google Scholar 

  7. Sospedra M, Martin R (2016) Immunology of multiple sclerosis. In: Seminars in neurology. Thieme Medical Publishers, pp 115–127

  8. Lemus HN, Warrington AE, Rodriguez M (2018) Multiple sclerosis: mechanisms of disease and strategies for myelin and axonal repair. Neurol Clin 36:1–11

    Article  Google Scholar 

  9. Duncan ID, Radcliff A (2020) Remyelination therapy for demyelinating disease. Nat Rev Neurol 1

  10. Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283:541–549. https://doi.org/10.1016/j.expneurol.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ponath G, Park C, Pitt D (2018) The Role of Astrocytes in Multiple Sclerosis. Front Immunol 9:217. https://doi.org/10.3389/fimmu.2018.00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991. https://doi.org/10.1038/nn.4338

    Article  CAS  PubMed  Google Scholar 

  13. Barry B, Erwin AA, Stevens J, Tornatore C (2019) Fingolimod rebound: a review of the clinical experience and management considerations. Neurol Ther 8:241–250

    Article  Google Scholar 

  14. Chun J, Kihara Y, Jonnalagadda D, Blaho VA (2019) Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annu Rev Pharmacol Toxicol 59:149–170

    Article  CAS  Google Scholar 

  15. Pitteri M, Magliozzi R, Bajrami A et al (2018) Potential neuroprotective effect of Fingolimod in multiple sclerosis and its association with clinical variables. Expert Opin Pharmacother 19:387–395

    Article  CAS  Google Scholar 

  16. Yao RW, Wang Y, Chen LL (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21:542–551. https://doi.org/10.1038/s41556-019-0311-8

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Wu Y, Zhang B, Ni B (2018) Noncoding RNAs in multiple sclerosis. Clin Epigenetics 10:149. https://doi.org/10.1186/s13148-018-0586-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khani-Habibabadi F, Askari S, Zahiri J et al (2019) Novel BDNF-regulatory microRNAs in neurodegenerative disorders pathogenesis: An in silico study. Comput Biol Chem 83:107153

    Article  CAS  Google Scholar 

  19. Pahlevan Kakhki M, Nikravesh A, Shirvani Farsani ZM, Sahraian MA, Behmanesh M (2018) HOTAIR but mot ANRIL long non-coding RNA contributes to the pathogenesis of multiple sclerosis. Immunology 153(4):479–487

    Article  CAS  Google Scholar 

  20. Cardamone G, Paraboschi EM, Soldà G et al (2019) Not only cancer: The long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet 28:1414–1428. https://doi.org/10.1093/hmg/ddy438

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Balasubramaniyan V, Peng J et al (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2:1044. https://doi.org/10.1038/nprot.2007.149

    Article  CAS  PubMed  Google Scholar 

  22. Medina-Rodríguez EM, Arenzana FJ, Bribián A, de Castro F (2013) Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans. PLoS ONE 8:e81620. https://doi.org/10.1371/journal.pone.0081620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Redmond SA, Mei F, Eshed-Eisenbach Y et al (2016) Somatodendritic expression of JAM2 inhibits oligodendrocyte myelination. Neuron 91:824–836. https://doi.org/10.1016/j.neuron.2016.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the alamarblue assay. Cold Spring Harb Protoc 2018:462–464. https://doi.org/10.1101/pdb.prot095489

    Article  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Chang D, Li Y (2017) Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc Chem Res 50:2273–2283

    Article  CAS  Google Scholar 

  27. Gruber AR, Bernhart SH, Lorenz R (2015) The ViennaRNA web services. In: RNA bioinformatics. Springer, pp 307–326

  28. Kim B (2017) Western blot techniques. In: Molecular Profiling. Springer, pp 133–139

  29. Tan B, Luo Z, Yue Y et al (2016) Effects of FTY720 (fingolimod) on proliferation, differentiation, and migration of brain-derived neural stem cells. Stem Cells Int 2016

  30. Patnaik A, Spiombi E, Frasca A et al (2020) Fingolimod modulates dendritic architecture in a BDNF-dependent manner. Int J Mol Sci 21:3079

    Article  CAS  Google Scholar 

  31. Hunter SF, Bowen JD, Reder AT (2016) The direct effects of fingolimod in the central nervous system: implications for relapsing multiple sclerosis. CNS Drugs 30:135–147

    Article  CAS  Google Scholar 

  32. Weinstock LD, Furness AM, Herron SS et al (2018) Fingolimod phosphate inhibits astrocyte inflammatory activity in mucolipidosis IV. Hum Mol Genet 27:2725–2738. https://doi.org/10.1093/hmg/ddy182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffmann FS, Hofereiter J, Rübsamen H et al (2015) Fingolimod induces neuroprotective factors in human astrocytes. J Neuroinflammation 12. https://doi.org/10.1186/s12974-015-0393-6

  34. Qin C, Fan WH, Liu Q et al (2017) Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke 48:3336–3346. https://doi.org/10.1161/STROKEAHA.117.018505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Onodera J, Nagata H, Nakashima A et al (2021) Neuronal brain-derived neurotrophic factor manipulates microglial dynamics. Glia 69:890–904

    Article  CAS  Google Scholar 

  36. Edelbrock AN, Àlvarez Z, Simkin D et al (2018) Supramolecular nanostructure activates TrkB receptor signaling of neuronal cells by mimicking brain-derived neurotrophic factor. Nano Lett 18:6237–6247

    Article  CAS  Google Scholar 

  37. Zhang J, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14:721–731

    Article  CAS  Google Scholar 

  38. Liu J, Li H, Zheng B et al (2019) Competitive endogenous RNA (ceRNA) regulation network of lncRNA–miRNA–mRNA in colorectal carcinogenesis. Dig Dis Sci 64:1868–1877

    Article  CAS  Google Scholar 

  39. Cantile M, Di Bonito M, Tracey De Bellis M, Botti G (2021) Functional interaction among lncRNA HOTAIR and microRNAs in cancer and other human diseases. Cancers (Basel) 13:570

    Article  CAS  Google Scholar 

  40. Zhou Q, Liu L, Zhou J et al (2021) Novel Insights Into MALAT1 Function as a MicroRNA Sponge in NSCLC . Front Oncol 11

  41. Mozdarani H, Ezzatizadeh V, Rahbar Parvaneh R (2020) The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J Transl Med 18:152. https://doi.org/10.1186/s12967-020-02320-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou L, Xu D, Sha W et al (2018) Long non-coding RNA MALAT1 interacts with transcription factor Foxo1 to regulate SIRT1 transcription in high glucose-induced HK-2 cells injury. Biochem Biophys Res Commun 503:849–855

    Article  CAS  Google Scholar 

  43. Yao J, Wang X, Li Y et al (2016) Long non-coding RNA MALAT 1 regulates retinal neurodegeneration through CREB signaling. EMBO Mol Med 8:346–362

    Article  CAS  Google Scholar 

  44. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing miRNA–lncRNA interactions. In: long non-coding RNAs. Springer, pp 271–286

  45. Li W, Xu H, Testai FD (2016) Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke . Front Neurol 7

  46. Chiba K (2020) Discovery of fingolimod based on the chemical modification of a natural product from the fungus, Isaria sinclairii. J Antibiot (Tokyo) 73:666–678. https://doi.org/10.1038/s41429-020-0351-0

    Article  CAS  Google Scholar 

  47. Zhang W, Qin L, Wang J et al (2018) HOTAIR promotes proliferation, migration and invasion of esophageal squamous cell carcinoma by regulating MAPK1

  48. Han C, Shen JK, Hornicek FJ et al (2017) Regulation of microRNA-1 (miR-1) expression in human cancer. Biochim Biophys Acta Gene Regul Mech 1860:227–232

    Article  CAS  Google Scholar 

  49. Arun G, Aggarwal D, Spector DL (2020) MALAT1 long non-coding RNA: Functional implications. Non-coding RNA 6:22

    Article  CAS  Google Scholar 

  50. Ezzatizadeh V, Mozdarani H (2019) Does HOTAIR expression level in the peripheral blood have veritably predictive/prognostic impact on breast cancer patients? J Transl Med 17:404. https://doi.org/10.1186/s12967-019-02158-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhan A, Mandal SS (2015) LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochim Biophys Acta 1856:151–164. https://doi.org/10.1016/j.bbcan.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baldassarro VA, Krężel W, Fernández M et al (2019) The role of nuclear receptors in the differentiation of oligodendrocyte precursor cells derived from fetal and adult neural stem cells. Stem Cell Res 37:101443. https://doi.org/10.1016/j.scr.2019.101443

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhary P, Marracci GH, Calkins E et al (2021) Thyroid hormone and thyromimetics inhibit myelin and axonal degeneration and oligodendrocyte loss in EAE. J Neuroimmunol 352:577468. https://doi.org/10.1016/j.jneuroim.2020.577468

    Article  CAS  PubMed  Google Scholar 

  54. Ruijtenberg S, van den Heuvel S (2016) Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 15:196–212

    Article  CAS  Google Scholar 

  55. Smith PA, Schmid C, Zurbruegg S et al (2018) Fingolimod inhibits brain atrophy and promotes brain-derived neurotrophic factor in an animal model of multiple sclerosis. J Neuroimmunol 318:103–113. https://doi.org/10.1016/j.jneuroim.2018.02.016

    Article  CAS  PubMed  Google Scholar 

  56. Segura-Ulate I, Yang B, Vargas-Medrano J, Perez RG (2017) FTY720 (Fingolimod) reverses α-synuclein-induced downregulation of brain-derived neurotrophic factor mRNA in OLN-93 oligodendroglial cells. Neuropharmacology 117:149–157

    Article  CAS  Google Scholar 

  57. Toyoshima A, Yasuhara T, Kameda M et al (2015) Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PLoS ONE 10:e0127302

    Article  Google Scholar 

  58. Xiao J, Hughes RA, Lim JY et al (2013) A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination. J Neurochem 125:386–398. https://doi.org/10.1111/jnc.12168

    Article  CAS  PubMed  Google Scholar 

  59. Chen Y, Li Z, Chen X, Zhang S (2021) Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B 11:340–354. https://doi.org/10.1016/j.apsb.2020.10.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Javad Mirnajafi-Zadeh for providing rat pups for this study. We also thank the funding source for their support.

Funding

This work was supported by the Iran National Science Foundation and the Department of Research Affairs of Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Fatemeh Khani-Habibabadi, Mehrdad Behmanesh, Leila Zare, and Mohammad Javan. The draft of the manuscript was written by Fatemeh Khani-Habibabadi, and it was corrected by Mehrdad Behmanesh. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Javan or Mehrdad Behmanesh.

Ethics declarations

Ethics approval

The procedures of this research were approved by the ethics community of Tarbiat Modares University (ID: IR.TMU.REC.1396.607).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/Competing interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani-Habibabadi, F., Zare, L., Sahraian, M.A. et al. Hotair and Malat1 Long Noncoding RNAs Regulate Bdnf Expression and Oligodendrocyte Precursor Cell Differentiation. Mol Neurobiol 59, 4209–4222 (2022). https://doi.org/10.1007/s12035-022-02844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02844-0

Keywords

Navigation