Skip to main content

Advertisement

Log in

Competitive Endogenous RNA (ceRNA) Regulation Network of lncRNA–miRNA–mRNA in Colorectal Carcinogenesis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Competitive endogenous RNA (ceRNA) regulation suggested complex network of all transcript RNAs including long noncoding RNAs (lncRNAs), which can act as natural miRNA sponges to inhibit miRNA functions and modulate mRNA expression. Until now, the specific ceRNA regulatory mechanism of lncRNA–miRNA–mRNA in colorectal cancer (CRC) still remains unclear.

Materials and Methods

RNA sequencing data of 478 colon adenocarcinoma cases and 41 controls as well as 166 rectum adenocarcinoma cases and 10 controls were obtained from The Cancer Genome Atlas (TCGA) to investigate the significant changes of lncRNAs, miRNAs and mRNAs in colorectal carcinogenesis. The target lncRNAs and mRNAs of miRNAs were predicted by miRWalk. Functional and enrichment analyses were conducted by DAVID database. The lncRNA–miRNA–mRNA interaction network was constructed using Cytoscape.

Results

We constructed ceRNA regulatory networks including 22 up-regulated lncRNAs, 12 down-regulated miRNAs and 122 up-regulated mRNAs, as well as 8 down-regulated lncRNAs, 43 up-regulated miRNAs and 139 down-regulated mRNAs. The GO enrichment showed that up-regulated genes mainly enriched in biological process including organic anion transport, collagen catabolic process, wound healing, Wnt receptor signalling and in pathways of tyrosine metabolism, taurine and hypotaurine metabolism, melanogenesis and phenylalanine metabolism. For down-regulated genes, significant enrichment was found in biological process of metal ion homeostasis, transmission of nerve impulse, cell–cell signalling, transmembrane transport and in pathways of ABC transporters, neuroactive ligand–receptor interaction, retinol metabolism, nitrogen metabolism and steroid hormone biosynthesis.

Conclusion

We identified significantly altered lncRNAs, miRNAs and mRNAs in colorectal carcinogenesis, which might serve as potential biomarkers for tumorigenesis of CRC. In addition, the ceRNA regulatory network of lncRNA–miRNA–mRNA was constructed, which would elucidate novel molecular mechanisms involved in initiation and progression of CRC, thus providing promising clues for clinical diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.

    Article  CAS  PubMed  Google Scholar 

  2. Esteller M, Pandolfi PP. The epitranscriptome of noncoding RNAs in Cancer. Cancer Discov. 2017;7:359–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–3981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bolha L, Ravnik-Glavac M, Glavac D. Long noncoding RNAs as biomarkers in cancer. Dis Mark. 2017;2017:7243968.

    Google Scholar 

  5. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giroud M, Scheideler M. Long non-coding RNAs in metabolic organs and energy homeostasis. Int J Mol Sci. 2017;18:2578.

    Article  CAS  PubMed Central  Google Scholar 

  7. Hu X, Sood AK, Dang CV, Zhang L. The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev. 2017;48:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  9. Donadon M, Ribero D, Morris-Stiff G, Abdalla EK, Vauthey JN. New paradigm in the management of liver-only metastases from colorectal cancer. Gastrointest Cancer Res GCR. 2007;1:20–27.

    PubMed  Google Scholar 

  10. Li B, Shi C, Zhao J, Li B. Long noncoding RNA CCAT1 functions as a ceRNA to antagonize the effect of miR-410 on the down-regulation of ITPKB in human HCT-116 and HCT-8 cells. Oncotarget. 2017;8:92855–92863.

    PubMed  PubMed Central  Google Scholar 

  11. Chen DL, Lu YX, Zhang JX, et al. Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics. 2017;7:4836–4849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu J, Zhang R, Zhao J. The novel long noncoding RNA TUSC7 inhibits proliferation by sponging MiR-211 in colorectal cancer. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2017;41:635–644.

    Article  CAS  Google Scholar 

  13. Zhou XG, Huang XL, Liang SY, et al. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis. OncoTargets Ther. 2018;11:2815–2830.

    Article  Google Scholar 

  14. Wei HT, Guo EN, Liao XW, et al. Genomescale analysis to identify potential prognostic microRNA biomarkers for predicting overall survival in patients with colon adenocarcinoma. Oncol Rep. 2018;40:1947–1958.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  16. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–847.

    Article  CAS  PubMed  Google Scholar 

  17. Dweep H, Gretz N, Sticht C. miRWalk database for miRNA–target interactions. Methods Mol Biol (Clifton NJ). 2014;1182:289–305.

    Article  CAS  Google Scholar 

  18. Dennis G Jr, Sherman BT, Hosack DA, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.

    Article  PubMed  Google Scholar 

  19. The Gene Ontology (GO) project in 2006. Nucleic Acids Research. 2006;34:D322–326.

  20. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin C, Yang L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2017;28:287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Renganathan A, Felley-Bosco E. Long noncoding RNAs in cancer and therapeutic potential. Adv Exp Med Biol. 2017;1008:199–222.

    Article  CAS  PubMed  Google Scholar 

  23. Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474:4219–4251.

    Article  CAS  PubMed  Google Scholar 

  24. Sun W, Yang Y, Xu C, Guo J. Regulatory mechanisms of long noncoding RNAs on gene expression in cancers. Cancer Genet. 2017;216–217:105–110.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Jiang Y, Zhu J, et al. Overexpression of long non-coding RNA colon cancer-associated transcript 2 is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Oncol Lett. 2017;14:6907–6914.

    PubMed  PubMed Central  Google Scholar 

  26. Ling H, Spizzo R, Atlasi Y, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23:1446–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han Y, Yang YN, Yuan HH, et al. UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology. 2014;46:396–401.

    Article  CAS  PubMed  Google Scholar 

  28. Ni B, Yu X, Guo X, et al. Increased urothelial cancer associated 1 is associated with tumor proliferation and metastasis and predicts poor prognosis in colorectal cancer. Int J Oncol. 2015;47:1329–1338.

    Article  CAS  PubMed  Google Scholar 

  29. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–222.

    Article  CAS  PubMed  Google Scholar 

  30. Mima K, Nishihara R, Yang J, et al. MicroRNA MIR21 (miR-21) and PTGS2 expression in colorectal cancer and patient survival. Clin Cancer Res. 2016;22:3841–3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding M, Zhang T, Li S, Zhang Y, Qiu Y, Zhang B. Correlation analysis between liver metastasis and serum levels of miR200 and miR141 in patients with colorectal cancer. Mol Med Rep. 2017;16:7791–7795.

    Article  CAS  PubMed  Google Scholar 

  32. Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA, Abreu JG. Flavonoids and Wnt/beta-catenin signaling: potential role in colorectal cancer therapies. Int J Mol Sci. 2014;15:12094–12106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Masuda M, Sawa M, Yamada T. Therapeutic targets in the Wnt signaling pathway: feasibility of targeting TNIK in colorectal cancer. Pharmacol Ther. 2015;156:1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Xue X, Taylor M, Anderson E, et al. Hypoxia-inducible factor-2alpha activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 2012;72:2285–2293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsumura T, Sugimachi K, Iinuma H, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015;113:275–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang X, Ding X, Nan L, et al. Investigation of the roles of exosomes in colorectal cancer liver metastasis. Oncol Rep. 2015;33:2445–2453.

    Article  CAS  PubMed  Google Scholar 

  37. Carethers JM, Jung BH. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology. 2015;149:1177–1190 e1173.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by grants from Public Welfare Foundation of Liaoning Province (No. 2015005002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Yuan or Chengzhong Xing.

Ethics declarations

Conflict of interest

All of the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, H., Zheng, B. et al. Competitive Endogenous RNA (ceRNA) Regulation Network of lncRNA–miRNA–mRNA in Colorectal Carcinogenesis. Dig Dis Sci 64, 1868–1877 (2019). https://doi.org/10.1007/s10620-019-05506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05506-9

Keywords

Navigation