Skip to main content
Log in

Distinct Epileptogenic Mechanisms Associated with Seizures in Wolf-Hirschhorn Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Seizures are one of the clinical hallmarks of Wolf-Hirschhorn syndrome (WHS), causing a significant impact on the life quality, still in the first years of life. Even that the knowledge about WHS–related seizure candidate genes has grown, cumulative evidence suggests synergic haploinsufficiency of distinct genes within cellular networks that should be better elucidated. Herein, we evaluated common mechanisms between candidate genes from WHS seizure-susceptibility regions (SSR) and genes globally associated with epilepsy. For this purpose, data from 94 WHS patients delineated by chromosomal microarray analysis were integrated into a tissue-specific gene network with gene expression, drugs, and biological processes. We found functional modules and signaling pathways involving candidate and new genes with potential involvement in the WHS–related seizure phenotype. The proximity among the previous reported haploinsufficient candidate genes (PIGG, CPLX1, CTBP1, LETM1) and disease genes associated with epilepsy suggests not just one, but different impaired mechanisms in cellular networks responsible for the balance of neuronal activity in WHS patients, from which neuron communication is the most impaired in WHS–related seizures. Furthermore, CTBP1 obtained the largest number of drug associations, reinforcing its importance for adaptations of brain circuits and its putative use as a pharmacological target for treating seizures/epilepsy in patients with WHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files).

References

  1. Maas NMC, Van Buggenhout G, Hannes F et al (2008) Genotype-phenotype correlation in 21 patients with Wolf-Hirschhorn syndrome using high resolution array comparative genome hybridisation (CGH). J Med Genet 45:71–80. https://doi.org/10.1136/jmg.2007.052910

    Article  CAS  PubMed  Google Scholar 

  2. Zollino M, Murdolo M, Marangi G et al (2008) On the nosology and pathogenesis of Wolf-Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review. Am J Med Genet Part C Semin Med Genet 148:257–269. https://doi.org/10.1002/ajmg.c.30190

    Article  CAS  Google Scholar 

  3. South ST, Hannes F, Fisch GS et al (2008) Pathogenic significance of deletions distal to the currently described Wolf-Hirschhorn syndrome critical regions on 4p16.3. Am J Med Genet Part C Semin Med Genet 148:270–274. https://doi.org/10.1002/ajmg.c.30188

    Article  CAS  Google Scholar 

  4. Battaglia A, Carey JC, South ST (2015) Wolf-Hirschhorn syndrome: a review and update. Am J Med Genet Part C Semin Med Genet 169:216–223. https://doi.org/10.1002/ajmg.c.31449

    Article  PubMed  Google Scholar 

  5. Corrêa T, Mergener R, Leite JCL et al (2018) Cytogenomic integrative network analysis of the critical region associated with Wolf-Hirschhorn syndrome. Biomed Res Int 2018.https://doi.org/10.1155/2018/5436187

  6. Zsurka G, Kunz WS (2015) Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 14:956–966. https://doi.org/10.1016/S1474-4422(15)00148-9

    Article  CAS  PubMed  Google Scholar 

  7. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca 2+/H+ antiporter. Science (80- ) 326:144–147. https://doi.org/10.1126/science.1175145

  8. Zhang X, Chen G, Lu Y et al (2014) Association of mitochondrial Letm1 with epileptic seizures. Cereb Cortex 24:2533–2540. https://doi.org/10.1093/cercor/bht118

    Article  CAS  PubMed  Google Scholar 

  9. Van Buggenhout G, Melotte C, Dutta B et al (2004) Mild Wolf-Hirschhorn syndrome: micro-array CGH analysis of atypical 4p16.3 deletions enables refinement of the genotype-phenotype map. J Med Genet 41:691–698. https://doi.org/10.1136/jmg.2003.016865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Misceo D, Barøy T, Helle JR et al (2012) 1.5Mb deletion of chromosome 4p16.3 associated with postnatal growth delay, psychomotor impairment, epilepsy, impulsive behavior and asynchronous skeletal development. Gene 507:85–91. https://doi.org/10.1016/j.gene.2012.07.021

    Article  CAS  PubMed  Google Scholar 

  11. Bayindir B, Piazza E, Della Mina E et al (2013) Dravet phenotype in a subject with a der(4)t(4;8)(p16.3;p23.3) without the involvement of the LETM1 gene. Eur J Med Genet 56:551–555. https://doi.org/10.1016/j.ejmg.2013.08.003

    Article  PubMed  Google Scholar 

  12. Andersen EF, Carey JC, Earl DL et al (2014) Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf-Hirschhorn Syndrome. Eur J Hum Genet 22:464–470. https://doi.org/10.1038/ejhg.2013.192

    Article  CAS  PubMed  Google Scholar 

  13. Zollino M, Orteschi D, Ruiter M et al (2014) Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf-Hirschhorn syndrome-associated seizures disorder. Epilepsia 55:849–857. https://doi.org/10.1111/epi.12617

    Article  CAS  PubMed  Google Scholar 

  14. Faravelli F, Murdolo M, Marangi G et al (2007) Mother to son amplification of a small subtelomeric deletion: a new mechanism of familial recurrence in microdeletion syndromes Francesca. Am J Med Genet Part A 143A:1169–1173. https://doi.org/10.1002/ajmg.a

    Article  CAS  PubMed  Google Scholar 

  15. Mekkawy MK, Kamel AK, Thomas MM et al (2020) Clinical and genetic characterization of ten Egyptian patients with Wolf–Hirschhorn syndrome and review of literature. Mol Genet Genomic Med 1–17.https://doi.org/10.1002/mgg3.1546

  16. Cho RW, Song Y, Littleton JT (2010) Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol Cell Neurosci 45:389–397. https://doi.org/10.1016/j.mcn.2010.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimizu K, Wakui K, Kosho T et al (2014) Microarray and FISH-based genotype-phenotype analysis of 22 Japanese patients with Wolf-Hirschhorn syndrome. Am J Med Genet Part A 164:597–609. https://doi.org/10.1002/ajmg.a.36308

    Article  CAS  Google Scholar 

  18. Simon R, Bergemann AD (2008) Mouse models of Wolf-Hirschhorn syndrome. Am J Med Genet Part C Semin Med Genet 148:275–280. https://doi.org/10.1002/ajmg.c.30184

    Article  CAS  Google Scholar 

  19. Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22:5296–5307. https://doi.org/10.1128/mcb.22.15.5296-5307.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garriga-Canut M, Schoenike B, Qazi R et al (2006) 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387. https://doi.org/10.1038/nn1791

    Article  CAS  PubMed  Google Scholar 

  21. Kinoshita T (2014) Biosynthesis and deficiencies of glycosylphosphatidylinositol. Proc Japan Acad Ser B Phys Biol Sci 90:130–143. https://doi.org/10.2183/pjab.90.130

    Article  CAS  Google Scholar 

  22. Ho KS, South ST, Lortz A et al (2016) Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome. J Med Genet 53:256–263. https://doi.org/10.1136/jmedgenet-2015-103626

    Article  CAS  PubMed  Google Scholar 

  23. Zollino M, Doronzio PN (2018) Dissecting the Wolf-Hirschhorn syndrome phenotype: WHSC1 is a neurodevelopmental gene contributing to growth delay, intellectual disability, and to the facial dysmorphism. J Hum Genet 63:859–861. https://doi.org/10.1038/s10038-018-0476-1

    Article  CAS  PubMed  Google Scholar 

  24. Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Corrêa T, Feltes BC, Schinzel A, Riegel M (2021) Network-based analysis using chromosomal microdeletion syndromes as a model. Am J Med Genet Part C Semin Med Genet 1–12.https://doi.org/10.1002/ajmg.c.31900

  26. Il GK, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690. https://doi.org/10.1073/pnas.0701361104

    Article  CAS  Google Scholar 

  27. Pelleri MC, Cicchini E, Petersen MB et al (2019) Partial trisomy 21 map: ten cases further supporting the highly restricted Down syndrome critical region (HR-DSCR) on human chromosome 21. Mol Genet Genomic Med 7:1–14. https://doi.org/10.1002/mgg3.797

    Article  CAS  Google Scholar 

  28. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2017) HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res 45:D408–D414. https://doi.org/10.1093/nar/gkw985

    Article  CAS  PubMed  Google Scholar 

  29. Speir ML, Zweig AS, Rosenbloom KR et al (2016) The UCSC Genome Browser database: 2016 update. Nucleic Acids Res 44:D717–D725. https://doi.org/10.1093/nar/gkv1275

    Article  CAS  PubMed  Google Scholar 

  30. Piñero J, Bravo Á, Queralt-Rosinach N et al (2017) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45:D833–D839. https://doi.org/10.1093/nar/gkw943

    Article  CAS  PubMed  Google Scholar 

  31. Ran X, Li J, Shao Q et al (2015) EpilepsyGene: a genetic resource for genes and mutations related to epilepsy. Nucleic Acids Res 43:D893–D899. https://doi.org/10.1093/nar/gku943

    Article  CAS  PubMed  Google Scholar 

  32. Greene CS, Krishnan A, Wong AK et al (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47:569–576. https://doi.org/10.1038/ng.3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ju W, Greene CS, Eichinger F et al (2013) Defining cell-type specificity at the transcriptional level in human disease. Genome Res 23:1862–1873. https://doi.org/10.1101/gr.155697.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ardlie KG, DeLuca DS, Segrè A V., et al (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science (80- ) 348:648–660. https://doi.org/10.1126/science.1262110

  37. Morris JH, Apeltsin L, Newman AM et al (2011) ClusterMaker: a multi-algorithm clustering plugin for cytoscape. BMC Bioinformatics 12:1–14. https://doi.org/10.1186/1471-2105-12-436

    Article  CAS  Google Scholar 

  38. Ritz A, Poirel CL, Tegge AN, et al (2016) Pathways on demand: automated reconstruction of human signaling networks. npj Syst Biol Appl 2:. https://doi.org/10.1038/npjsba.2016.2

  39. Concolino D, Rossi E, Strisciuglio P et al (2007) Deletion of a 760 kb region at 4p16 determines the prenatal and postnatal growth retardation characteristic of Wolf-Hirschhorn syndrome. J Med Genet 44:647–650. https://doi.org/10.1136/jmg.2007.050963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Engbers H, van der Smagt JJ, van’t Slot R, et al (2009) Wolf-Hirschhorn syndrome facial dysmorphic features in a patient with a terminal 4p16.3 deletion telomeric to the WHSCR and WHSCR 2 regions. Eur J Hum Genet 17:129–132. https://doi.org/10.1038/ejhg.2008.168

    Article  CAS  PubMed  Google Scholar 

  41. Izumi K, Okuno H, Maeyama K et al (2010) Interstitial microdeletion of 4p16.3: contribution of WHSC1 haploinsufficiency to the pathogenesis of developmental delay in Wolf-Hirschhorn syndrome. Am J Med Genet Part A 152:1028–1032. https://doi.org/10.1002/ajmg.a.33121

    Article  Google Scholar 

  42. Cammarata-scalisi F, Lago RB, Gali PB et al (2019) Síndrome de Wolf-Hirschhorn. Descripción de cinco casos caracterizados por microarrays de polimorfismos de nucleótido único. Arch Argent Pediatr 117:406–412. https://doi.org/10.5546/aap.2019.e406

    Article  Google Scholar 

  43. Mbuyi-Musanzayi S, Lumaka A, Kasole T et al (2017) Wolf-Hirschhorn syndrome: clinical and genetic data from a first case diagnosed in Central Africa. J Pediatr Genet 06:186–190. https://doi.org/10.1055/s-0037-1599194

    Article  Google Scholar 

  44. Yang WX, Pan H, Li L et al (2016) Analyses of genotypes and phenotypes of ten Chinese patients with Wolf-Hirschhorn syndrome by multiplex ligation-dependent probe amplification and array comparative genomic hybridization. Chin Med J (Engl) 129:672–678. https://doi.org/10.4103/0366-6999.177996

    Article  CAS  Google Scholar 

  45. Okamoto N, Ohmachi K, Shimada S et al (2013) 109kb deletion of chromosome 4p16.3 in a patient with mild phenotype of Wolf-Hirschhorn syndrome. Am J Med Genet Part A 161:1465–1469. https://doi.org/10.1002/ajmg.a.35910

    Article  CAS  Google Scholar 

  46. Rauch A, Schellmoser S, Kraus C, et al (2001) Rapid publication first known microdeletion within the Wolf-Hirschhorn-syndrome critical region refines genotype ± phenotype correlation. 342:338–342

  47. Hannes F, Hammond P, Quarrell O, et al (2012) A microdeletion proximal of the critical deletion region is associated with mild Wolf-Hirschhorn syndrome. Am J Med Genet Part A 158 A:996–1004. https://doi.org/10.1002/ajmg.a.35299

  48. Almeida AM, Murakami Y, Layton DM et al (2006) Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat Med 12:846–851. https://doi.org/10.1038/nm1410

    Article  CAS  PubMed  Google Scholar 

  49. Ilkovski B, Pagnamenta AT, O’Grady GL et al (2015) Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Hum Mol Genet 24:6146–6159. https://doi.org/10.1093/hmg/ddv331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Makrythanasis P, Kato M, Zaki MS et al (2016) Pathogenic variants in PIGG cause intellectual disability with seizures and hypotonia. Am J Hum Genet 98:615–626. https://doi.org/10.1016/j.ajhg.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ivanova D, Dirks A, Montenegro‐Venegas C, et al (2015) Synaptic activity controls localization and function of Ct BP 1 via binding to B assoon and P iccolo . EMBO J 34:1056–1077. https://doi.org/10.15252/embj.201488796

  52. Cho CH (2011) Frontier of epilepsy research - mtor signaling pathway. Exp Mol Med 43:231–274. https://doi.org/10.3858/emm.2011.43.5.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sha L, Wu X, Yao Y et al (2014) Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol 49:633–644. https://doi.org/10.1007/s12035-013-8545-0

    Article  CAS  PubMed  Google Scholar 

  54. Citraro R, Leo A, De Caro C et al (2020) Effects of histone deacetylase inhibitors on the development of epilepsy and psychiatric comorbidity in WAG/Rij rats. Mol Neurobiol 57:408–421. https://doi.org/10.1007/s12035-019-01712-8

    Article  CAS  PubMed  Google Scholar 

  55. Akyuz E, Polat AK, Eroglu E et al (2021) Revisiting the role of neurotransmitters in epilepsy: an updated review. Life Sci 265:118826. https://doi.org/10.1016/j.lfs.2020.118826

    Article  CAS  PubMed  Google Scholar 

  56. Goldenberg MM (2010) Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P T 35:392–415

    PubMed  PubMed Central  Google Scholar 

  57. Battaglia A, Filippi T, Carey JC (2008) Update on the clinical features and natural history of Wolf-Hirschhorn (4p-) syndrome: experience with 87 patients and recommendations for routine health supervision. Am J Med Genet Part C Semin Med Genet 148:246–251. https://doi.org/10.1002/ajmg.c.30187

    Article  CAS  Google Scholar 

  58. Ho KS, Markham LM, Twede H et al (2018) A survey of antiepileptic drug responses identifies drugs with potential efficacy for seizure control in Wolf-Hirschhorn syndrome. Epilepsy Behav 81:55–61. https://doi.org/10.1016/j.yebeh.2017.12.008

    Article  PubMed  Google Scholar 

  59. Cuenca PJ, Holt KR, Hoefle JD (2004) Seizure secondary to citalopram overdose. J Emerg Med 26:177–181. https://doi.org/10.1016/j.jemermed.2003.06.005

    Article  PubMed  Google Scholar 

  60. Ambrogini P, Torquato P, Bartolini D et al (2019) Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: the role of vitamin E. Biochim Biophys Acta - Mol Basis Dis 1865:1098–1112. https://doi.org/10.1016/j.bbadis.2019.01.026

    Article  CAS  PubMed  Google Scholar 

  61. Wu X, Liu W, Wang W et al (2019) Altered intrinsic brain activity associated with outcome in frontal lobe epilepsy. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-45413-7

    Article  CAS  Google Scholar 

  62. Streng ML, Krook-Magnuson E (2020) The cerebellum and epilepsy. Epilepsy Behav 106909.https://doi.org/10.1016/j.yebeh.2020.106909

  63. Battaglia A, Filippi T, South ST, Carey JC (2009) Spectrum of epilepsy and electroencephalogram patterns in Wolf-Hirschhorn syndrome: experience with 87 patients. Dev Med Child Neurol 51:373–380. https://doi.org/10.1111/j.1469-8749.2008.03233.x

    Article  PubMed  Google Scholar 

  64. Mitić V, Cuturilo G, Novaković I et al (2011) Epilepsy in a child with Wolf-Hirschhorn syndrome. Srp Arh Celok Lek 139:795–799. https://doi.org/10.2298/SARH1112795M

    Article  PubMed  Google Scholar 

  65. Salpietro V, Malintan NT, Llano-Rivas I et al (2019) Mutations in the neuronal vesicular SNARE VAMP2 affect synaptic membrane fusion and impair human neurodevelopment. Am J Hum Genet 104:721–730. https://doi.org/10.1016/j.ajhg.2019.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Helbig I, Lopez-Hernandez T, Shor O et al (2019) A recurrent missense variant in AP2M1 impairs clathrin-mediated endocytosis and causes developmental and epileptic encephalopathy. Am J Hum Genet 104:1060–1072. https://doi.org/10.1016/j.ajhg.2019.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jassal B, Matthews L, Viteri G et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  68. Shah VJ, Maddika S (2018) CRL7SMU1 E3 ligase complex-driven H2B ubiquitylation functions in sister chromatid cohesion by regulating SMC1 expression. J Cell Sci 131:1–13. https://doi.org/10.1242/jcs.213868

    Article  CAS  Google Scholar 

  69. Jansen S, Kleefstra T, Willemsen MH et al (2016) De novo loss-of-function mutations in X-linked SMC1A cause severe ID and therapy-resistant epilepsy in females: expanding the phenotypic spectrum. Clin Genet 90:413–419. https://doi.org/10.1111/cge.12729

    Article  CAS  PubMed  Google Scholar 

  70. Symonds JD, Joss S, Metcalfe KA et al (2017) Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: detailed phenotyping of 10 new cases. Epilepsia 58:565–575. https://doi.org/10.1111/epi.13669

    Article  CAS  PubMed  Google Scholar 

  71. Gao Z, Lee P, Stafford JM et al (2014) An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516:349–354. https://doi.org/10.1038/nature13921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mefford HC, Muhle H, Ostertag P et al (2010) Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 6:1–9. https://doi.org/10.1371/journal.pgen.1000962

    Article  CAS  Google Scholar 

  73. Baumkötter F, Schmidt N, Vargas C et al (2014) Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 34:11159–11172. https://doi.org/10.1523/JNEUROSCI.0180-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sima X, Xu J, Li J et al (2014) Expression of β-amyloid precursor protein in refractory epilepsy. Mol Med Rep 9:1242–1248. https://doi.org/10.3892/mmr.2014.1977

    Article  CAS  PubMed  Google Scholar 

  75. Baloun J, Bencurova P, Totkova T et al (2020) Epilepsy miRNA profile depends on the age of onset in humans and rats. Front Neurosci 14:1–14. https://doi.org/10.3389/fnins.2020.00924

    Article  Google Scholar 

  76. Baghel R, Grover S, Kaur H et al (2016) Synergistic association of STX1A and VAMP2 with cryptogenic epilepsy in North Indian population. Brain Behav 6:1–8. https://doi.org/10.1002/brb3.490

    Article  Google Scholar 

  77. Azevedo H, Khaled NA, Santos P et al (2018) Temporal analysis of hippocampal CA3 gene coexpression networks in a rat model of febrile seizures. DMM Dis Model Mech 11.https://doi.org/10.1242/dmm.029074

  78. Floriano-Sánchez E, Brindis F, Ortega-Cuellar D et al (2018) Differential gene expression profile induced byvalproic acid (VPA) in pediatric epileptic patients. Genes (Basel) 9:1–15. https://doi.org/10.3390/genes9070328

    Article  CAS  Google Scholar 

  79. Urra H, Henriquez DR, Cánovas J et al (2018) IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat Cell Biol 20:942–953. https://doi.org/10.1038/s41556-018-0141-0

    Article  CAS  PubMed  Google Scholar 

  80. Parrini E, Ramazzotti A, Dobyns WB et al (2006) Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin a mutations. Brain 129:1892–1906. https://doi.org/10.1093/brain/awl125

    Article  CAS  PubMed  Google Scholar 

  81. Licausi F, Hartman NW (2018) Role of mTOR complexes in neurogenesis. Int J Mol Sci 19.https://doi.org/10.3390/ijms19051544

  82. Jansen LA, Mirzaa GM, Ishak GE et al (2015) PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138:1613–1628. https://doi.org/10.1093/brain/awv045

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xie X, Zhang D, Zhao B et al (2011) IκB kinase ε and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci U S A 108:6474–6479. https://doi.org/10.1073/pnas.1016132108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

T.C. and C.B.S.R. are supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T.C. and C.B.S.-R.; methodology: T.C.; software: T.C.; formal analysis: T.C.; investigation: T.C., M.M., and C.B.S.-R.; writing—original draft preparation: all authors; review: C.B.S.-R.; visualization: T.C.; supervision: C.B.S.-R. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Thiago Corrêa.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12035_2022_2792_MOESM1_ESM.xlsx

Supplementary file1 Table-1. Summary of the deletions in WHS individuals reported in the literature, with selected references, presence/absence of seizures, and extension of the deletions. Table-2. List of proteins present in the expanded subnetwork from the human interactome. (XLSX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, T., Mayndra, M. & Santos-Rebouças, C.B. Distinct Epileptogenic Mechanisms Associated with Seizures in Wolf-Hirschhorn Syndrome. Mol Neurobiol 59, 3159–3169 (2022). https://doi.org/10.1007/s12035-022-02792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02792-9

Keywords

Navigation