Skip to main content

Advertisement

Log in

Inhibition of Spinal Interleukin-33 Attenuates Peripheral Inflammation and Hyperalgesia in Experimental Arthritis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that the continuous and intense nociceptive from inflamed tissue may increase the excitability of spinal dorsal horn neurons, which can signal back and modulate peripheral inflammation. Previous studies have demonstrated that spinal interleukin (IL)-33 contributes to the hyperexcitability of spinal dorsal horn neurons. This study was undertaken to investigate whether spinal IL-33 can also influence a peripheral inflammatory response in a rat model of arthritis. Lentivirus-delivered short hairpin RNA targeting IL-33 (LV-shIL-33) was constructed for gene silencing. Rats with adjuvant-induced arthritis (AIA) were injected intrathecally with LV-shIL-33 3 days before the complete Freund’s adjuvant (CFA) injection. During an observation period of 21 days, pain-related behavior and inflammation were assessed. In addition, the expression of spinal proinflammatory cytokines and the activation of spinal extracellular signal–regulated kinase (ERK) and nuclear factor-κB (NF-κB) pathways were evaluated on 9 days after CFA treatment. The existence of tissue injury or inflammation in rats with AIA resulted in the upregulation of spinal IL-33, which is predominantly expressed in neurons, astrocytes, and oligodendrocytes. Intrathecal administration of LV-shIL-33 significantly alleviated hyperalgesia, paw swelling, and joint destruction, and attenuated the expression of proinflammatory cytokines [IL-6, IL-1β, and tumor necrosis factor-α (TNF-α)], as well as the activation of ERK and NF-κB/p65 in the spinal cord. Our data suggest that spinal IL-33 contributes to the development of both peripheral inflammation and hyperalgesia. Thus, interference with IL-33 at the spinal level might represent a novel therapeutic target for painful inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

IL-33:

Interleukin-33

CFA:

Complete Freund’s adjuvant

HPA:

Hypothalamic-pituitary-adrenal

AIA:

Adjuvant-induced arthritis

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

TNF-α:

Tumor necrosis factor-α

NF-κB:

Nuclear factor-κB

ERK:

Extracellular signal-regulated kinase

JNK:

C-Jun N-terminal kinase

GFAP:

Glial fibrillary acidic protein

NeuN:

Neuronal-specific nuclear protein

siRNAs:

Small interfering RNAs

RA:

Rheumatoid arthritis

CXCL-8:

C-X-C motif chemokine ligand 8

MMP-3:

Matrix metalloproteinase-3

References

  1. del Rey A, Wolff C, Wildmann J, Randolf A, Hahnel A, Besedovsky HO, Straub RH (2008) Disrupted brain-immune system-joint communication during experimental arthritis. Arthritis Rheum 58(10):3090–3099. https://doi.org/10.1002/art.23869

    Article  CAS  PubMed  Google Scholar 

  2. Straub RH, Harle P (2005) Sympathetic neurotransmitters in joint inflammation. Rheumatic diseases clinics of North America 31 (1):43–59, viii. https://doi.org/10.1016/j.rdc.2004.09.003

  3. Hagains CE, Trevino LA, He JW, Liu H, Peng YB (2010) Contributions of dorsal root reflex and axonal reflex to formalin-induced inflammation. Brain Res 1359:90–97. https://doi.org/10.1016/j.brainres.2010.08.097

    Article  CAS  PubMed  Google Scholar 

  4. Li D, Ren Y, Xu X, Zou X, Fang L, Lin Q (2008) Sensitization of primary afferent nociceptors induced by intradermal capsaicin involves the peripheral release of calcitonin gene-related Peptide driven by dorsal root reflexes. j pain official j American Pain Society 9(12):1155–1168. https://doi.org/10.1016/j.jpain.2008.06.011

    Article  CAS  Google Scholar 

  5. Boyle DL, Jones TL, Hammaker D, Svensson CI, Rosengren S, Albani S, Sorkin L, Firestein GS (2006) Regulation of peripheral inflammation by spinal p38 MAP kinase in rats. PLoS Med 3(9):e338. https://doi.org/10.1371/journal.pmed.0030338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo JG, Zhao XL, Xu WC, Zhao XJ, Wang JN, Lin XW, Sun T, Fu ZJ (2014) Activation of spinal NF-kappaB/p65 contributes to peripheral inflammation and hyperalgesia in rat adjuvant-induced arthritis. Arthritis Rheumatol 66(4):896–906. https://doi.org/10.1002/art.38328

    Article  CAS  PubMed  Google Scholar 

  7. Boyle DL, Moore J, Yang L, Sorkin LS, Firestein GS (2002) Spinal adenosine receptor activation inhibits inflammation and joint destruction in rat adjuvant-induced arthritis. Arthritis Rheum 46(11):3076–3082. https://doi.org/10.1002/art.10595

    Article  CAS  PubMed  Google Scholar 

  8. Daher JB, de Melo MD, Tonussi CR (2005) Evidence for a spinal serotonergic control of the peripheral inflammation in the rat. Life Sci 76(20):2349–2359. https://doi.org/10.1016/j.lfs.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  9. Bressan E, Mitkovski M, Tonussi CR (2010) LPS-induced knee-joint reactive arthritis and spinal cord glial activation were reduced after intrathecal thalidomide injection in rats. Life Sci 87(15–16):481–489. https://doi.org/10.1016/j.lfs.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23(5):479–490. https://doi.org/10.1016/j.immuni.2005.09.015

    Article  CAS  PubMed  Google Scholar 

  11. Verri WA Jr, Souto FO, Vieira SM, Almeida SC, Fukada SY, Xu D, Alves-Filho JC, Cunha TM, Guerrero AT, Mattos-Guimaraes RB, Oliveira FR, Teixeira MM, Silva JS, McInnes IB, Ferreira SH, Louzada-Junior P, Liew FY, Cunha FQ (2010) IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis 69(9):1697–1703. https://doi.org/10.1136/ard.2009.122655

    Article  CAS  PubMed  Google Scholar 

  12. Han P, Mi WL, Wang YQ (2011) Research progress on interleukin-33 and its roles in the central nervous system. Neurosci Bull 27(5):351–357. https://doi.org/10.1007/s12264-011-1025-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikawa T, Saito Y, Fujiyama Y, Andoh A (2010) Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol 45(10):999–1007. https://doi.org/10.1007/s00535-010-0245-1

    Article  CAS  PubMed  Google Scholar 

  14. Kempuraj D, Twait EC, Williard DE, Yuan Z, Meyerholz DK, Samuel I (2013) The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice. PLoS ONE 8(2):e56866. https://doi.org/10.1371/journal.pone.0056866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fattori V, Hohmann MSN, Rossaneis AC, Manchope MF, Alves-Filho JC, Cunha TM, Cunha FQ, Verri WA Jr (2017) Targeting IL-33/ST2 signaling: regulation of immune function and analgesia. Expert Opin Ther Targets 21(12):1141–1152. https://doi.org/10.1080/14728222.2017.1398734

    Article  CAS  PubMed  Google Scholar 

  16. Liu S, Mi WL, Li Q, Zhang MT, Han P, Hu S, Mao-Ying QL, Wang YQ (2015) Spinal IL-33/ST2 signaling contributes to neuropathic pain via neuronal CaMKII-CREB and astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology 123(5):1154–1169. https://doi.org/10.1097/aln.0000000000000850

    Article  CAS  PubMed  Google Scholar 

  17. Zarpelon AC, Rodrigues FC, Lopes AH, Souza GR, Carvalho TT, Pinto LG, Xu D, Ferreira SH, Alves-Filho JC, McInnes IB, Ryffel B, Quesniaux VF, Reverchon F, Mortaud S, Menuet A, Liew FY, Cunha FQ, Cunha TM, Verri WA Jr (2016) Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J 30(1):54–65. https://doi.org/10.1096/fj.14-267146

    Article  CAS  PubMed  Google Scholar 

  18. Han P, Liu S, Zhang M, Zhao J, Wang Y, Wu G, Mi W (2015) Inhibition of Spinal Interlukin-33/ST2 Signaling and downstream ERK and JNK pathways in electroacupuncture analgesia in formalin mice. PLoS ONE 10(6):e0129576. https://doi.org/10.1371/journal.pone.0129576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Zhang H, Liu SB, Han P, Hu S, Li Q, Wang ZF, Mao-Ying QL, Chen HM, Jiang JW, Wu GC, Mi WL, Wang YQ (2013) Spinal interleukin-33 and its receptor ST2 contribute to bone cancer-induced pain in mice. Neuroscience 253:172–182. https://doi.org/10.1016/j.neuroscience.2013.08.026

    Article  CAS  PubMed  Google Scholar 

  20. Huang SJ, Yan JQ, Luo H, Zhou LY, Luo JG (2018) IL-33/ST2 signaling contributes to radicular pain by modulating MAPK and NF-kappaB activation and inflammatory mediator expression in the spinal cord in rat models of noncompressive lumber disk herniation. J Neuroinflammation 15(1):12. https://doi.org/10.1186/s12974-017-1021-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  PubMed  Google Scholar 

  22. Storkson RV, Kjorsvik A, Tjolsen A, Hole K (1996) Lumbar catheterization of the spinal subarachnoid space in the rat. J Neurosci Methods 65(2):167–172. https://doi.org/10.1016/0165-0270(95)00164-6

    Article  CAS  PubMed  Google Scholar 

  23. Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, Katovich MJ, Semple-Rowland SL, Raizada MK (2003) Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12(3):221–228. https://doi.org/10.1152/physiolgenomics.00135.2002

    Article  CAS  PubMed  Google Scholar 

  24. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  25. He TF, Yang WJ, Zhang SH, Zhang CY, Li LB, Chen YF (2011) Electroacupuncture inhibits inflammation reaction by upregulating vasoactive intestinal peptide in rats with adjuvant-induced arthritis. Evidence-based complementary and alternative medicine : eCAM 2011. https://doi.org/10.1155/2011/290489

  26. Manjavachi MN, Quintao NL, Campos MM, Deschamps IK, Yunes RA, Nunes RJ, Leal PC, Calixto JB (2010) The effects of the selective and non-peptide CXCR2 receptor antagonist SB225002 on acute and long-lasting models of nociception in mice. Eur J Pain 14(1):23–31. https://doi.org/10.1016/j.ejpain.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  27. DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  28. Bressan E, Peres KC, Tonussi CR (2012) Evidence that LPS-reactive arthritis in rats depends on the glial activity and the fractalkine-TNF-alpha signaling in the spinal cord. Neuropharmacology 62(2):947–958. https://doi.org/10.1016/j.neuropharm.2011.09.028

    Article  CAS  PubMed  Google Scholar 

  29. Chavan SS, Pavlov VA, Tracey KJ (2017) Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46(6):927–942. https://doi.org/10.1016/j.immuni.2017.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boettger MK, Weber K, Grossmann D, Gajda M, Bauer R, Bar KJ, Schulz S, Voss A, Geis C, Brauer R, Schaible HG (2010) Spinal tumor necrosis factor alpha neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis: a role for spinal tumor necrosis factor alpha during induction and maintenance of peripheral inflammation. Arthritis Rheum 62(5):1308–1318. https://doi.org/10.1002/art.27380

    Article  CAS  PubMed  Google Scholar 

  31. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51(2):240–264. https://doi.org/10.1016/j.brainresrev.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  32. Fiorentino PM, Tallents RH, Miller JN, Brouxhon SM, O’Banion MK, Puzas JE, Kyrkanides S (2008) Spinal interleukin-1beta in a mouse model of arthritis and joint pain. Arthritis Rheum 58(10):3100–3109. https://doi.org/10.1002/art.23866

    Article  CAS  PubMed  Google Scholar 

  33. Daher JB, Tonussi CR (2003) A spinal mechanism for the peripheral anti-inflammatory action of indomethacin. Brain Res 962(1–2):207–212. https://doi.org/10.1016/s0006-8993(02)04056-8

    Article  CAS  PubMed  Google Scholar 

  34. Du LX, Wang YQ, Hua GQ, Mi WL (2018) IL-33/ST2 pathway as a rational therapeutic target for CNS diseases. Neuroscience 369:222–230. https://doi.org/10.1016/j.neuroscience.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  35. Georgievska B, Kirik D, Bjorklund A (2004) Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J Neurosci 24(29):6437–6445. https://doi.org/10.1523/JNEUROSCI.1122-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA, Kingsman SM, Mazarakis ND (2004) Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther 9(1):101–111. https://doi.org/10.1016/j.ymthe.2003.09.017

    Article  CAS  PubMed  Google Scholar 

  37. Pezet S, Krzyzanowska A, Wong LF, Grist J, Mazarakis ND, Georgievska B, McMahon SB (2006) Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF. Mol Ther 13(6):1101–1109. https://doi.org/10.1016/j.ymthe.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  38. Hung AL, Lim M, Doshi TL (2017) Targeting cytokines for treatment of neuropathic pain. Scand J Pain 17:287–293. https://doi.org/10.1016/j.sjpain.2017.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA (2018) Immune cytokines and their receptors in inflammatory pain. Trends Immunol 39(3):240–255. https://doi.org/10.1016/j.it.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Jiang SS, Huang SJ, Nite W, Ren F, Yan JQ, Luo JG (2021) Interleukin-33 modulates lipopolysaccharide-mediated inflammatory response in rat primary astrocytes. NeuroReport 32(8):694–701. https://doi.org/10.1097/WNR.0000000000001644

    Article  CAS  PubMed  Google Scholar 

  41. Zhuang ZY, Gerner P, Woolf CJ, Ji RR (2005) ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114(1–2):149–159. https://doi.org/10.1016/j.pain.2004.12.022

    Article  PubMed  Google Scholar 

  42. Sun T, Luo J, Jia M, Li H, Li K, Fu Z (2012) Small interfering RNA-mediated knockdown of NF-kappaBp65 attenuates neuropathic pain following peripheral nerve injury in rats. Eur J Pharmacol 682(1–3):79–85. https://doi.org/10.1016/j.ejphar.2012.02.017

    Article  CAS  PubMed  Google Scholar 

  43. Xia Y, Zhai Q (2010) IL-1beta enhances the antibacterial activity of astrocytes by activation of NF-kappaB. Glia 58(2):244–252. https://doi.org/10.1002/glia.20921

    Article  PubMed  Google Scholar 

  44. Lu K, Cho CL, Liang CL, Chen SD, Liliang PC, Wang SY, Chen HJ (2007) Inhibition of the MEK/ERK pathway reduces microglial activation and interleukin-1-beta expression in spinal cord ischemia/reperfusion injury in rats. J Thorac Cardiovasc Surg 133(4):934–941. https://doi.org/10.1016/j.jtcvs.2006.11.038

    Article  CAS  PubMed  Google Scholar 

  45. Miao GS, Liu ZH, Wei SX, Luo JG, Fu ZJ, Sun T (2015) Lipoxin A4 attenuates radicular pain possibly by inhibiting spinal ERK, JNK and NF-kappaB/p65 and cytokine signals, but not p38, in a rat model of non-compressive lumbar disc herniation. Neuroscience 300:10–18. https://doi.org/10.1016/j.neuroscience.2015.04.060

    Article  CAS  PubMed  Google Scholar 

  46. Ding CP, Guo YJ, Li HN, Wang JY, Zeng XY (2018) Red nucleus interleukin-6 participates in the maintenance of neuropathic pain through JAK/STAT3 and ERK signaling pathways. Exp Neurol 300:212–221. https://doi.org/10.1016/j.expneurol.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  47. Xu WD, Zhang M, Zhang YJ, Ye DQ (2013) IL-33 in rheumatoid arthritis: potential role in pathogenesis and therapy. Hum Immunol 74(9):1057–1060. https://doi.org/10.1016/j.humimm.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  48. Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer CA, Viatte S, Finckh A, Smith DE, Gabay C (2009) Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum 60(3):738–749. https://doi.org/10.1002/art.24305

    Article  CAS  PubMed  Google Scholar 

  49. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL 3rd (2009) Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain 10(5):447–485. https://doi.org/10.1016/j.jpain.2008.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  50. Aloisi AM, Ceccarelli I (2000) Role of gonadal hormones in formalin-induced pain responses of male rats: modulation by estradiol and naloxone administration. Neuroscience 95(2):559–566. https://doi.org/10.1016/s0306-4522(99)00445-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 81600976) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ6138).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Luo had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study conception and design, Luo, Yan; acquisition of data, Huang, Zhou, Luo; analysis and interpretation of data, Zhou.

Corresponding author

Correspondence to Jian-Gang Luo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics approval.

All the animal studies were approved by the Animal Ethics Committee of Central South University (No. 201603359)and complied with the ethical guidelines of the International Association for the Study of Pain (IASP).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SJ., Zhou, LY., Ren, F. et al. Inhibition of Spinal Interleukin-33 Attenuates Peripheral Inflammation and Hyperalgesia in Experimental Arthritis. Mol Neurobiol 59, 2246–2257 (2022). https://doi.org/10.1007/s12035-022-02754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02754-1

Keywords

Navigation