Skip to main content
Log in

PrPSc Inhibition and Cellular Protection of DBL on a Prion-Infected Cultured Cell via Multiple Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prion diseases are kinds of fatal neurodegenerative diseases without effective therapeutic and prophylactic tools currently. In this study, the inhibition of PrPSc propagation and cellular protectivity of 3,4-dihydroxybenzalacetone (DBL), a small catechol-containing compound isolated and purified from the ethanol extract of Inonotus obliquus, upon a prion-infected cell line SMB-S15 were evaluated. Western blots showed that after incubation with 10 μM of DBL for 14 days, the level of PrPSc in SMB-S15 cells was significantly decreased. Meanwhile, the levels of ROS and hydrogen peroxide were decreased with a dose-dependent manner, whereas the levels of some antioxidant factors, such as HO-1, GCLC and GCLM, were significantly increased. The activities of total glutathione and SOD were up-regulated. DBL-treated SMB-S15 cells also showed the up-regulation of UPR-related proteins, including PERK, IRE1α, ATF6 and GRP78, and activation of autophagy system. Furthermore, the SIRT3 abnormalities caused by prion infection were relieved by DBL treatment. On the contrary, these comprehensive changes were not significantly noticed in the normal partner cell line SMB-PS under the same experimental condition. Those data indicate that treatment of DBL on prion-infected cells can reduce PrPSc level, activate UPR and autophagy system and meanwhile relieve intracellular oxidative stress, endoplasmic reticulum stress and mitochondrial dysfunction by raising the levels of multiple antioxidant factors. The PrPSc inhibition and protective effectiveness of DBL upon the prion-infected cells in vitro make it worthy of further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated for this study are available on request to the corresponding authors.

References

  1. Walker LC, Jucker M (2015) Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 38:87–103. https://doi.org/10.1146/annurev-neuro-071714-033828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guentchev M, Voigtlander T, Haberler C, Groschup MH, Budka H (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol Dis 7:270–273. https://doi.org/10.1006/nbdi.2000.0290

    Article  CAS  PubMed  Google Scholar 

  3. Prasad KN, Bondy SC (2019) Oxidative and inflammatory events in prion diseases: can they be therapeutic targets? Curr Aging Sci 11:216–225. https://doi.org/10.2174/1874609812666190111100205

    Article  CAS  PubMed  Google Scholar 

  4. Tang Y, Xiang W, Terry L, Kretzschmar HA, Windl O (2010) Transcriptional analysis implicates endoplasmic reticulum stress in bovine spongiform encephalopathy. PLoS ONE 5:e14207. https://doi.org/10.1371/journal.pone.0014207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi SI, Ju WK, Choi EK, Kim J, Lea HZ, Carp RI, Wisniewski HM, Kim YS (1998) Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent. Acta Neuropathol 96:279–286. https://doi.org/10.1007/s004010050895

    Article  CAS  PubMed  Google Scholar 

  6. Faris R, Moore RA, Ward A, Sturdevant DE, Priola SA (2017) Mitochondrial Respiration Is Impaired during Late-Stage Hamster Prion Infection. J Virol 91. https://doi.org/10.1128/jvi.00524-17

  7. Zhong XH, Ren K, Lu SJ, Yang SY, Sun DZ (2009) Progress of research on Inonotus obliquus. Chin J Integr Med 15:156–160. https://doi.org/10.1007/s11655-009-0156-2

    Article  PubMed  Google Scholar 

  8. Han Y, Nan S, Fan J, Chen Q, Zhang Y (2019) Inonotus obliquus polysaccharides protect against Alzheimer’s disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. Int J Biol Macromol 131:769–778. https://doi.org/10.1016/j.ijbiomac.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima Y, Sato Y, Konishi T (2007) Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chem Pharm Bull 55:1222–1226. https://doi.org/10.1248/cpb.55.1222

    Article  CAS  Google Scholar 

  10. Sung B, Pandey MK, Nakajima Y, Nishida H, Konishi T, Chaturvedi MM, Aggarwal BB (2008) Identification of a novel blocker of IkappaBalpha kinase activation that enhances apoptosis and inhibits proliferation and invasion by suppressing nuclear factor-kappaB. Mol Cancer Ther 7:191–201. https://doi.org/10.1158/1535-7163.Mct-07-0406

    Article  CAS  PubMed  Google Scholar 

  11. Nakajima Y, Nishida H, Matsugo S, Konishi T (2009) Cancer cell cytotoxicity of extracts and small phenolic compounds from Chaga [Inonotus obliquus (persoon) Pilat]. J Med Food 12:501–507. https://doi.org/10.1089/jmf.2008.1149

    Article  CAS  PubMed  Google Scholar 

  12. Gunjima K, Tomiyama R, Takakura K, Yamada T, Hashida K, Nakamura Y, Konishi T, Matsugo S et al (2014) 3,4-dihydroxybenzalacetone protects against Parkinson’s disease-related neurotoxin 6-OHDA through Akt/Nrf2/glutathione pathway. J Cell Biochem 115:151–160. https://doi.org/10.1002/jcb.24643

    Article  CAS  PubMed  Google Scholar 

  13. Tomiyama R, Takakura K, Takatou S, Le TM, Nishiuchi T, Nakamura Y, Konishi T, Matsugo S et al (2018) 3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester induce preconditioning ER stress and autophagy in SH-SY5Y cells. J Cell Physiol 233:1671–1684. https://doi.org/10.1002/jcp.26080

    Article  CAS  PubMed  Google Scholar 

  14. Solassol J, Crozet C, Lehmann S (2003) Prion propagation in cultured cells. Br Med Bull 66:87–97. https://doi.org/10.1093/bmb/66.1.87

    Article  CAS  PubMed  Google Scholar 

  15. Birkett CR, Hennion RM, Bembridge DA, Clarke MC, Chree A, Bruce ME, Bostock CJ (2001) Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. Embo j 20:3351–3358. https://doi.org/10.1093/emboj/20.13.3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asuni AA, Guridi M, Sanchez S, Sadowski MJ (2015) Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo. Neurochem Int 90:152–165. https://doi.org/10.1016/j.neuint.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maimaitiming A, Xiao K, Hu C, Chen J, Yang X-H, Zhou D-H, Gao L-P, Dong X-P et al (2019) Aberrant Decrease of the Endogenous SIRT3 and Increases of Acetylated Proteins in Scrapie-Infected Cell Line SMB-S15 and in the Brains of Experimental Mice. ACS Chem Neurosci 10:4293–4302. https://doi.org/10.1021/acschemneuro.9b00341

    Article  CAS  PubMed  Google Scholar 

  18. Bolognesi ML, Legname G (2015) Approaches for discovering anti-prion compounds: lessons learned and challenges ahead. Expert Opin Drug Discov 10:389–397. https://doi.org/10.1517/17460441.2015.1016498

    Article  CAS  PubMed  Google Scholar 

  19. Zhou DH, Wang J, Xiao K, Wu YZ, Maimaitiming A, Hu C, Gao LP, Chen J et al (2020) Stilbene Compounds Inhibit the Replications of Various Strains of Prions in the Levels of Cell Culture, PMCA, and RT-QuIC Possibly via Molecular Binding. ACS Chem Neurosci 11:2117–2128. https://doi.org/10.1021/acschemneuro.0c00218

    Article  CAS  PubMed  Google Scholar 

  20. Moreira PI, Smith MA, Zhu X, Nunomura A, Castellani RJ, Perry G (2005) Oxidative stress and neurodegeneration. Ann N Y Acad Sci 1043:545–552. https://doi.org/10.1196/annals.1333.062

    Article  CAS  PubMed  Google Scholar 

  21. Chen T, Zhu J, Wang YH, Hang CH (2019) ROS-Mediated Mitochondrial Dysfunction and ER Stress Contribute to Compression-Induced Neuronal Injury. Neuroscience 416:268–280. https://doi.org/10.1016/j.neuroscience.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  22. Weldy CS, Luttrell IP, White CC, Morgan-Stevenson V, Bammler TK, Beyer RP, Afsharinejad Z, Kim F et al (2012) Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice. Free Radical Biol Med 53:1264–1278. https://doi.org/10.1016/j.freeradbiomed.2012.07.006

    Article  CAS  Google Scholar 

  23. Kongpetch S, Kukongviriyapan V, Prawan A, Senggunprai L, Kukongviriyapan U, Buranrat B (2012) Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. PLoS ONE 7:e34994. https://doi.org/10.1371/journal.pone.0034994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ninić A, Sopić M, Munjas J, Spasojević-Kalimanovska V, Kotur-Stevuljević J, Bogavac-Stanojević N, Ivanišević J, Simić-Ogrizović S et al (2018) Association Between Superoxide Dismutase Isoenzyme Gene Expression and Total Antioxidant Status in Patients with an End-Stage Renal Disease. Balkan Med J 35:431–436. https://doi.org/10.4274/balkanmedj.2018.0170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang D, Lin L, Li X, Sun GF (2015) Effects of glutathione on the in vivo metabolism and oxidative stress of arsenic in mice. J Toxicol Sci 40:577–583. https://doi.org/10.2131/jts.40.577

    Article  CAS  PubMed  Google Scholar 

  26. Yao H, Zhao D, Khan SH, Yang L (2013) Role of autophagy in prion protein-induced neurodegenerative diseases. Acta Biochim Biophys Sin 45:494–502. https://doi.org/10.1093/abbs/gmt022

    Article  CAS  PubMed  Google Scholar 

  27. Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L (2018) p62-Keap1-NRF2-ARE pathway: a contentious player for selective targeting of autophagy, oxidative stress and mitochondrial dysfunction in prion diseases. Front Mol Neurosci 11. https://doi.org/10.3389/fnmol.2018.00310

  28. Hirschey MD, Shimazu T, Huang JY, Schwer B, Verdin E (2011) SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol 76:267–277. https://doi.org/10.1101/sqb.2011.76.010850

    Article  CAS  PubMed  Google Scholar 

  29. Parodi-Rullán RM, Chapa-Dubocq XR, Javadov S (2018) Acetylation of Mitochondrial Proteins in the Heart: the role of SIRT3. Front Physiol 9:1094. https://doi.org/10.3389/fphys.2018.01094

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, Billings FT, Verdin E et al (2020) Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res 126(439):452. https://doi.org/10.1161/circresaha.119.315767

    Article  Google Scholar 

  31. Bause AS, Haigis MC (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48:634–639. https://doi.org/10.1016/j.exger.2012.08.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Natural Science Foundation of China (81772197, 81630062, 81401670), SKLID Development Grant (2021SKLID504, 2019SKLID401, 2019SKLID603).

Funding

This work was supported by National Natural Science Foundation of China (81772197, 81630062, 81401670), SKLID Development Grant (2021SKLID504, 2019SKLID401, 2019SKLID603).

Author information

Authors and Affiliations

Authors

Contributions

W.Y. and C.C. contributed to study design, performed assays and data analysis, and prepared the manuscript. J.C., Y.X. and Y.Z.W. assisted with the assays of Western Blot analysis. L.W. and C.H. assisted with the assays of cultured cells. Q.S. assisted with statistical analysis. C.C, Z.B.C. and X.P.D. corresponding authors, contributed to design, study concept and manuscript preparation.

Corresponding authors

Correspondence to Cao Chen, Zhi-Bao Chen or Xiao-Ping Dong.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest and consent for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Chen, C., Chen, J. et al. PrPSc Inhibition and Cellular Protection of DBL on a Prion-Infected Cultured Cell via Multiple Pathways. Mol Neurobiol 59, 3310–3321 (2022). https://doi.org/10.1007/s12035-022-02729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02729-2

Keywords

Navigation