Skip to main content

Advertisement

Log in

Recent Investigations on Neurotransmitters’ Role in Acute White Matter Injury of Perinatal Glia and Pharmacotherapies—Glia Dynamics in Stem Cell Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Periventricular leukomalacia (PVL) and cerebral palsy are two neurological disease conditions developed from the premyelinated white matter ischemic injury (WMI). The significant pathophysiology of these diseases is accompanied by the cognitive deficits due to the loss of function of glial cells and axons. White matter makes up 50% of the brain volume consisting of myelinated and non-myelinated axons, glia, blood vessels, optic nerves, and corpus callosum. Studies over the years have delineated the susceptibility of white matter towards ischemic injury especially during pregnancy (prenatal, perinatal) or immediately after child birth (postnatal). Impairment in membrane depolarization of neurons and glial cells by ischemia-invoked excitotoxicity is mediated through the overactivation of NMDA receptors or non-NMDA receptors by excessive glutamate influx, calcium, or ROS overload and has been some of the well-studied molecular mechanisms conducive to the injury of white matter. Expression of glutamate receptors (GluR) and transporters (GLT1, EACC1, and GST) has significant influence in glial and axonal-mediated injury of premyelinated white matter during PVL and cerebral palsy. Predominantly, the central premyelinated axons express extensive levels of functional NMDA GluR receptors to confer ischemic injury to premyelinated white matter which in turn invoke defects in neural plasticity. Several underlying molecular mechanisms are yet to be unraveled to delineate the complete pathophysiology of these prenatal neurological diseases for developing the novel therapeutic modalities to mitigate pathophysiology and premature mortality of newborn babies. In this review, we have substantially discussed the above multiple pathophysiological aspects of white matter injury along with glial dynamics, and the pharmacotherapies including recent insights into the application of MSCs as therapeutic modality in treating white matter injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

source by transferring lactate and pyruvate into the periaxonal space through transporters such as MCT1 and MCT2. Any imbalance or failure in this energy supply can invoke ionic imbalance, followed by the depolarization, and heavy calcium influx through different channels to foster injury to the white matter structures. Calcium regulatory systems are significantly present in axons and glia to promote persistent calcium homeostasis through ‘plasmalemmal Ca2.1-ATPase’ NCX, (it can induce the efflux of high calcium), and intracellular calcium transporters (for example, axoplasmic reticulum [AR] Ca2+-ATPase [SERCA] and mitochondrial calcium homeostasis via uptake of Ca2+). Node of Ranvier is reported to be abundant in voltage gated-sodium channels (Nav1.6) to mediate spike current whereas the axolemma is composed of AMPA and kainate receptors as well as VGCC together coupled with internal calcium stores on AR to enhance calcium release. In addition, other metabotropic receptors such as mGluR and GABA-B and ATP receptors also exist. Interestingly, myelin expresses NMDA, AMPA, and purinergic receptors which are permeable to calcium, and these receptors could invoke the transfer of exosomes from oligodendrocytes to the growing axons. Ion-coupled transmitters , viz. glut (glutamate), glycine (glyT), and norepinephrine (NET) which are reported to be  modulated in terms of their release  according to the pathological condition. MCT, monocarboxylate transporters

Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

OGD:

Oxygen glucose deprivation

WMI:

White matter injury

PVL:

Periventricular leukomalacia

LPS:

Lipopolysaccharide

IGF-1:

Insulin-like growth factor-1

EAATs:

Excitatory amino acid transporters

RON:

Rat optic nerve

References

  1. Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M (2005) Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 115(4):997–1003

    Article  PubMed  Google Scholar 

  2. Beaino G, Khoshnood B, Kaminski M, Pierrat V, Marret S, Matis J, Ledesert B, Thiriez G, Fresson J, ROZÉ JC, (2010) Predictors of cerebral palsy in very preterm infants: the EPIPAGE prospective population-based cohort study. Dev Med Child Neurol 52(6):e119–e125

    Article  PubMed  Google Scholar 

  3. Hack M, Taylor HG, Drotar D, Schluchter M, Cartar L, Andreias L, Wilson-Costello D, Klein N (2005) Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990s. JAMA 294(3):318–325

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Li J, Qin G-L, Chen Y-H, Wang Q (2008) Periventricular leukomalacia in premature infants in mainland China. Am J Perinatol 25(09):535–540

    Article  PubMed  Google Scholar 

  5. Mercier CE, Dunn MS, Ferrelli KR, Howard DB, Soll RF, Group VONEIF-US (2010) Neurodevelopmental outcome of extremely low birth weight infants from the Vermont Oxford network: 1998–2003. Neonatology 97(4):329–338

    Article  Google Scholar 

  6. Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC, Perez M, Mukherjee P, Vigneron DB, Barkovich AJ (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 147(5):609–616

    Article  PubMed  Google Scholar 

  7. Soria-Pastor S, Gimenez M, Narberhaus A, Falcon C, Botet F, Bargallo N, Mercader JM, Junque C (2008) Patterns of cerebral white matter damage and cognitive impairment in adolescents born very preterm. Int J Dev Neurosci 26(7):647–654

    Article  PubMed  Google Scholar 

  8. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. The Lancet Neurology 8(1):110–124

    Article  PubMed  PubMed Central  Google Scholar 

  9. Constantinou JC, Adamson-Macedo EN, Mirmiran M, Fleisher BE (2007) Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J Perinatol 27(4):225–229

    Article  CAS  PubMed  Google Scholar 

  10. Spittle AJ, Boyd RN, Inder TE, Doyle LW (2009) Predicting motor development in very preterm infants at 12 months’ corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics 123(2):512–517

    Article  PubMed  Google Scholar 

  11. Spittle AJ, Brown NC, Doyle LW, Boyd RN, Hunt RW, Bear M, Inder TE (2008) Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics 121(5):e1184–e1189

    Article  PubMed  Google Scholar 

  12. Aarnoudse-Moens CSH, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J (2009) Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124(2):717–728

    Article  PubMed  Google Scholar 

  13. Anderson PJ, Doyle LW Cognitive and educational deficits in children born extremely preterm. In: Seminars in perinatology, 2008. vol 1. Elsevier, pp 51–58

  14. Delobel-Ayoub M, Arnaud C, White-Koning M, Casper C, Pierrat V, Garel M, Burguet A, Roze J-C, Matis J, Picaud J-C (2009) Behavioral problems and cognitive performance at 5 years of age after very preterm birth: the EPIPAGE Study. Pediatrics 123(6):1485–1492

    Article  PubMed  Google Scholar 

  15. Kesler SR, Reiss AL, Vohr B, Watson C, Schneider KC, Katz KH, Maller-Kesselman J, Silbereis J, Constable RT, Makuch RW (2008) Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. The Journal of pediatrics 152 (4):513–520. e511

  16. Sontheimer H, Fernandez-Marques E, Ullrich N, Pappas C, Waxman S (1994) Astrocyte Na+ channels are required for maintenance of Na+/K (+)-ATPase activity. J Neurosci 14(5):2464–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Filho WJ, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology 513(5):532–541

    Article  Google Scholar 

  18. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62(9):1377–1391

    Article  PubMed  Google Scholar 

  19. Jäkel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH (2014) Recognition of tumors by the innate immune system and natural killer cells. In: Advances in immunology, vol 122. Elsevier, pp 91–128

  21. Sawada M, Suzumura A, Hosoya H, Marunouchi T, Nagatsu T (1999) Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 72(4):1466–1471

    Article  CAS  PubMed  Google Scholar 

  22. Saitgareeva AR, Bulygin KV, Gareev IF, Beylerli OA, Akhmadeeva LR (2020) The role of microglia in the development of neurodegeneration. Neurol Sci 41:3609–3615

    Article  PubMed  Google Scholar 

  23. Chen W (2010) Regional Heterogeneity and Diversity of Astrocytes in Response to HIV-1 Proteins and Morphine.

  24. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25(9):2192–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin SC, Bergles DE (2004) Synaptic signaling between neurons and glia. Glia 47(3):290–298

    Article  PubMed  Google Scholar 

  26. Reissner KJ, Kalivas PW (2010) Using glutamate homeostasis as a target for treating addictive disorders. Behav Pharmacol 21(5–6):514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baydyuk M, Morrison VE, Gross PS, Huang JK (2020) Extrinsic factors driving oligodendrocyte lineage cell progression in CNS development and injury. Neurochemical Research:1–13

  28. Fern R, Möller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20(1):34–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Craig A, Luo NL, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181(2):231–240

    Article  PubMed  Google Scholar 

  30. Larsen BR, MacAulay N (2014) Kir4. 1-mediated spatial buffering of K+: experimental challenges in determination of its temporal and quantitative contribution to K+ clearance in the brain. Channels 8 (6):544–550

  31. Larsen BR, Stoica A, MacAulay N (2016) Managing brain extracellular K+ during neuronal activity: the physiological role of the Na+/K+-ATPase subunit isoforms. Front Physiol 7:141

    Article  PubMed  PubMed Central  Google Scholar 

  32. Steffensen I, Stys PK (1996) REVIEW■: The Na-Ca exchanger in neurons and glial cells. Neuroscientist 2(3):162–171

    Article  CAS  Google Scholar 

  33. Floyd CL, Gorin FA, Lyeth BG (2005) Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51(1):35–46

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luo T, Wu W-H, Chen B-S (2011) NMDA receptor signaling: death or survival? Frontiers in biology 6(6):468–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matute C, Alberdi E, Domercq M, Sánchez-Gómez MV, Pérez-Samartín A, Rodríguez-Antigüedad A, Pérez-Cerdá F (2007) Excitotoxic damage to white matter. J Anat 210(6):693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Underhill SM, Goldberg MP (2007) Hypoxic injury of isolated axons is independent of ionotropic glutamate receptors. Neurobiol Dis 25(2):284–290

    Article  CAS  PubMed  Google Scholar 

  37. Chen YC, Smith DH, Meaney DF (2009) In-vitro approaches for studying blast-induced traumatic brain injury. J Neurotrauma 26(6):861–876

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M (2013) The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rezaie P, Dean A (2002) Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 22(3):106–132

    Article  PubMed  Google Scholar 

  40. Back SA, Riddle A, McClure MM (2007) Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38(2):724–730

    Article  PubMed  Google Scholar 

  41. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21(4):1302–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438(7071):1167–1171

    Article  CAS  PubMed  Google Scholar 

  43. Bakiri Y, Hamilton NB, Káradóttir R, Attwell D (2008) Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 56(2):233–240

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rosi S, Belarbi K, Ferguson RA, Fishman K, Obenaus A, Raber J, Fike JR (2012) Trauma-induced alterations in cognition and Arc expression are reduced by previous exposure to 56Fe irradiation. Hippocampus 22(3):544–554

    Article  CAS  PubMed  Google Scholar 

  45. Manning SM, Talos DM, Zhou C, Selip DB, Park H-K, Park C-J, Volpe JJ, Jensen FE (2008) NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J Neurosci 28(26):6670–6678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fern R (1998) Intracellular calcium and cell death during ischemia in neonatal rat white matter astrocytes in situ. J Neurosci 18(18):7232–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Najafi A, Etezadi F, Moharari RS, Pourfakhr P, Khajavi MR (2017) The role of neurotransmitters in anesthesia. Archives of Anesthesiology and Critical Care 3(2):324–333

    Google Scholar 

  48. Fern R, Matute C (2019) Glutamate receptors and white matter stroke. Neurosci Lett 694:86–92

    Article  CAS  PubMed  Google Scholar 

  49. Matute C, Domercq M, Pérez-Samartín A, Ransom BR (2013) Protecting white matter from stroke injury. Stroke 44(4):1204–1211

    Article  PubMed  Google Scholar 

  50. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M (2020) Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci 14:51

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wolke SA (2018) Mechanisms of reward in depression: an intervention study investigating the acute effects of lurasidone on cerebral blood flow and the neural correlates of reward and penalty processing. King’s College London,

  52. Desfeux A, El Ghazi F, Jégou S, Legros H, Marret S, Laudenbach V, Gonzalez BJ (2010) Dual effect of glutamate on GABAergic interneuron survival during cerebral cortex development in mice neonates. Cereb Cortex 20(5):1092–1108

    Article  PubMed  Google Scholar 

  53. DeSilva TM, Kabakov AY, Goldhoff PE, Volpe JJ, Rosenberg PA (2009) Regulation of glutamate transport in developing rat oligodendrocytes. J Neurosci 29(24):7898–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zorumski CF, Thio LL (1992) Properties of vertebrate glutamate receptors: calcium mobilization and desensitization. Prog Neurobiol 39(3):295–336

    Article  CAS  PubMed  Google Scholar 

  55. Raj GM, Raveendran R (2019) Introduction to Basics of Pharmacology and Toxicology: Volume 1: General and Molecular Pharmacology: Principles of Drug Action. Springer Nature,

  56. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou X, Ding Q, Chen Z, Yun H, Wang H (2013) Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem 288(33):24151–24159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–62

    CAS  PubMed  Google Scholar 

  59. Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BS, Altmüller J, Becker C, Schöbel N, Hatt H (2013) Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PloS one 8 (11):e79523

  60. Yao L, Zhou Q (2017) Enhancing NMDA receptor function: recent progress on allosteric modulators. Neural Plasticity 2017

  61. Miyashita T, Oda Y, Horiuchi J, Yin JC, Morimoto T, Saitoe M (2012) Mg2+ block of Drosophila NMDA receptors is required for long-term memory formation and CREB-dependent gene expression. Neuron 74(5):887–898

    Article  CAS  PubMed  Google Scholar 

  62. Bolton C, Paul C (2006) Glutamate receptors in neuroinflammatory demyelinating disease. Mediators of inflammation 2006

  63. Wollmuth LP, Sakmann B (1998) Different mechanisms of Ca2+ transport in NMDA and Ca2+-permeable AMPA glutamate receptor channels. J Gen Physiol 112(5):623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kampa BM, Clements J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556(2):337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tovar KR, Westbrook GL (2017) Modulating synaptic NMDA receptors. Neuropharmacology 112:29–33

    Article  CAS  PubMed  Google Scholar 

  66. Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26(5):1331–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li X (2009) The role of NR2A-and NR2B-containing NMDA receptors in innate anxiety. University of Ottawa (Canada),

  68. Matute C, Domercq M, Sánchez-Gómez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53(2):212–224

    Article  PubMed  Google Scholar 

  69. Matute C (2011) Glutamate and ATP signalling in white matter pathology. J Anat 219(1):53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nadjafi S, Ebrahimi S-A, Rahbar-Roshandel N (2014) Protective effects of berberine on oxygen-glucose deprivation/reperfusion on oligodendrocyte cell line (OLN-93). Int J Prev Med 5(9):1153

    PubMed  PubMed Central  Google Scholar 

  71. Piña-Crespo JC, Talantova M, Micu I, Chen H-SV, Tu S, Nakanishi N, Tong G, Zhang D, Heinemann SF, Zamponi GW (2010) Excitatory glycine responses of CNS myelin mediated by NR1/NR3 “NMDA” receptor subunits. J Neurosci 30(34):11501–11505

    Article  PubMed  PubMed Central  Google Scholar 

  72. Burzomato V, Frugier G, Pérez-Otaño I, Kittler JT, Attwell D (2010) The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J Physiol 588(18):3403–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jantzie LL, Talos DM, Jackson MC, Park H-K, Graham DA, Lechpammer M, Folkerth RD, Volpe JJ, Jensen FE (2015) Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain. Cereb Cortex 25(2):482–495

    Article  PubMed  Google Scholar 

  74. Bowie D (2012) Redefining the classification of AMPA-selective ionotropic glutamate receptors. J Physiol 590(1):49–61

    Article  CAS  PubMed  Google Scholar 

  75. Dai WM, Egebjerg J, Lambert JD (2001) Characteristics of AMPA receptor-mediated responses of cultured cortical and spinal cord neurones and their correlation to the expression of glutamate receptor subunits, GluR1-4. Br J Pharmacol 132(8):1859–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Washburn MS, Numberger M, Zhang S, Dingledine R (1997) Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J Neurosci 17(24):9393–9406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kumar J, Schuck P, Mayer ML (2011) Structure and assembly mechanism for heteromeric kainate receptors. Neuron 71(2):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eckmann CR, Jantsch MF (1999) The RNA-editing enzyme ADAR1 is localized to the nascent ribonucleoprotein matrix on Xenopus lampbrush chromosomes but specifically associates with an atypical loop. J Cell Biol 144(4):603–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24(18):4412–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tariq A, Jantsch MF (2012) Transcript diversification in the nervous system: A to I RNA-editing in CNS function and disease development. Front Neurosci 6:99

    Article  PubMed  PubMed Central  Google Scholar 

  81. Slotkin W, Nishikura K (2013) Adenosine-to-inosine RNA editing and human disease. Genome Med 5:105

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17(2):83–96

    Article  CAS  PubMed  Google Scholar 

  83. Barbon A, Barlati S (2011) Glutamate receptor RNA editing in health and disease. Biochem Mosc 76(8):882–889

    Article  CAS  Google Scholar 

  84. Wright AL, Vissel B (2012) The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci 5:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li JB, Church GM (2013) Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 16(11):1518–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maas S, Kawahara Y, Tamburro KM, Nishikura K (2006) A-to-I RNA editing and human disease. RNA Biol 3(1):1–9

    Article  CAS  PubMed  Google Scholar 

  87. Kwak S, Kawahara Y (2005) Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 83(2):110–120

    Article  CAS  PubMed  Google Scholar 

  88. Oakes E, Anderson A, Cohen-Gadol A, Hundley HA (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem 292(10):4326–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mehmood A, Laiho A, Venäläinen MS, McGlinchey AJ, Wang N, Elo LL (2020) Systematic evaluation of differential splicing tools for RNA-seq studies. Brief Bioinform 21(6):2052–2065

    Article  CAS  PubMed  Google Scholar 

  90. Jacobs MM, Fogg RL, Emeson RB, Stanwood GD (2009) ADAR1 and ADAR2 expression and editing activity during forebrain development. Dev Neurosci 31(3):223–237

    Article  CAS  PubMed  Google Scholar 

  91. Pachernegg S, Münster Y, Muth-Köhne E, Fuhrmann G, Hollmann M (2015) GluA2 is rapidly edited at the Q/R site during neural differentiation in vitro. Front Cell Neurosci 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lomeli H, Mosbacher J, Melcher T, Hoger T, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266(5191):1709–1713

    Article  CAS  PubMed  Google Scholar 

  93. Wahlstedt H, Daniel C, Ensterö M, Öhman M (2009) Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 19(6):978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brusa R, Zimmermann F, Koh D-S, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270(5242):1677–1680

    Article  CAS  PubMed  Google Scholar 

  95. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406(6791):78–81

    Article  CAS  PubMed  Google Scholar 

  96. Filippini A, Bonini D, La Via L, Barbon A (2017) The good and the bad of glutamate receptor RNA editing. Mol Neurobiol 54(9):6795–6805

    Article  CAS  PubMed  Google Scholar 

  97. Konen LM, Wright AL, Royle GA, Morris GP, Lau BK, Seow PW, Zinn R, Milham LT, Vaughan CW, Vissel B (2020) A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability. Mol Brain 13(1):1–19

    Article  Google Scholar 

  98. Herbrechter R, Hube N, Buchholz R, Reiner A (2021) Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data. Cellular and Molecular Life Sciences:1–26

  99. Xiao B, Chen D, Zhou Q, Hang J, Zhang W, Kuang Z, Sun Z, Li L (2019) Glutamate metabotropic receptor 4 (GRM4) inhibits cell proliferation, migration and invasion in breast cancer and is regulated by miR-328-3p and miR-370-3p. BMC Cancer 19(1):1–10

    Article  Google Scholar 

  100. Billups D, Billups B, Challiss RJ, Nahorski SR (2006) Modulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential. J Neurosci 26(39):9983–9995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Godinho RO, Duarte T, Pacini ESA (2015) New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway. Front Pharmacol 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ramos C, Chardonnet S, Marchand CH, Decottignies P, Ango F, Daniel H, Le Maréchal P (2012) Native presynaptic metabotropic glutamate receptor 4 (mGluR4) interacts with exocytosis proteins in rat cerebellum. J Biol Chem 287(24):20176–20186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, Jayawant S, Fawcett K, Clokie S, Wallis Y (2017) Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. The American Journal of Human Genetics 101(3):451–458

    Article  CAS  PubMed  Google Scholar 

  104. Schöneberg T, Liebscher I (2021) Mutations in G protein–coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches. Pharmacol Rev 73(1):89–119

    Article  PubMed  Google Scholar 

  105. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gether U, Andersen PH, Larsson OM, Schousboe A (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27(7):375–383

    Article  CAS  PubMed  Google Scholar 

  107. Focke PJ, Wang X, Larsson HP (2013) Neurotransmitter transporters: structure meets function. Structure 21(5):694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203(1):1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10(3):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23(4):1320–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dimou L, Gallo V (2015) NG 2-glia and their functions in the central nervous system. Glia 63(8):1429–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zieminska E, Toczylowska B, Diamandakis D, Hilgier W, Filipkowski RK, Polowy R, Orzel J, Gorka M, Lazarewicz JW (2018) Glutamate, glutamine and GABA levels in rat brain measured using MRS, HPLC and NMR methods in study of two models of autism. Front Mol Neurosci 11:418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yamada K, Watanabe M, Shibata T, Nagashima M, Tanaka K, Inoue Y (1998) Glutamate transporter GLT-1 is transiently localized on growing axons of the mouse spinal cord before establishing astrocytic expression. J Neurosci 18(15):5706–5713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pfefferbaum A, Adalsteinsson E, Bell RL, Sullivan EV (2007) Development and resolution of brain lesions caused by pyrithiamine-and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology 32(5):1159–1177

    Article  CAS  PubMed  Google Scholar 

  115. Back SA, Rosenberg PA (2014) Pathophysiology of glia in perinatal white matter injury. Glia 62(11):1790–1815

    Article  PubMed  PubMed Central  Google Scholar 

  116. Volpe SL, Poule KA, Bland EG (2009) Estimation of prepractice hydration status of National Collegiate Athletic Association Division I athletes. J Athl Train 44(6):624–629

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51(6–7):333–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World journal of psychiatry 8(2):51

    Article  PubMed  PubMed Central  Google Scholar 

  119. Káradóttir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145(4):1426–1438

    Article  PubMed  Google Scholar 

  120. Svistunova DM, Musinova YR, Polyakov VY, Sheval EV (2012) A simple method for the immunocytochemical detection of proteins inside nuclear structures that are inaccessible to specific antibodies. J Histochem Cytochem 60(2):152–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Arranz AM, Hussein A, Alix JJ, Pérez-Cerdá F, Allcock N, Matute C, Fern R (2008) Functional glutamate transport in rodent optic nerve axons and glia. Glia 56(12):1353–1367

    Article  PubMed  Google Scholar 

  122. Alix JJ, Fern R (2009) Glutamate receptor-mediated ischemic injury of premyelinated central axons. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 66(5):682–693

    Article  CAS  Google Scholar 

  123. Rigby MJ, Gomez TM, Puglielli L (2020) Glial cell-axonal growth cone interactions in neurodevelopment and regeneration. Front Neurosci 14:203

    Article  PubMed  PubMed Central  Google Scholar 

  124. Østensjø S, Carlberg EB, Vøllestad NK (2004) Motor impairments in young children with cerebral palsy: relationship to gross motor function and everyday activities. Dev Med Child Neurol 46(9):580–589

    Article  PubMed  Google Scholar 

  125. Huria T, Beeraka NM, Al-Ghamdi B, Fern R (2015) Premyelinated central axons express neurotoxic NMDA receptors: relevance to early developing white-matter injury. J Cereb Blood Flow Metab 35(4):543–553

    Article  CAS  PubMed  Google Scholar 

  126. Matute C, Ransom BR (2012) Roles of white matter in central nervous system pathophysiologies. ASN neuro 4 (2):AN20110060

  127. Alghamdi B, Fern R (2015) Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2 (+) cells. Front Neuroanat 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  128. Beeraka N, Huria T, Elgradawi M, Elzwei S (2017) Picrotoxin (GABAA receptor antagonist) shows a protective role in brain injury during neonatal development.

  129. Belachew S, Malgrange B, Rigo JM, Rogister B, Leprince P, Hans G, Nguyen L, Moonen G (2000) Glycine triggers an intracellular calcium influx in oligodendrocyte progenitor cells which is mediated by the activation of both the ionotropic glycine receptor and Na+-dependent transporters. Eur J Neurosci 12(6):1924–1930

    Article  CAS  PubMed  Google Scholar 

  130. Li D, Agulhon C, Schmidt E, Oheim M, Ropert N (2013) New tools for investigating astrocyte-to-neuron communication. Front Cell Neurosci 7:193

    Article  PubMed  PubMed Central  Google Scholar 

  131. Papanikolaou M, Lewis A, Butt A (2017) Store-operated calcium entry is essential for glial calcium signalling in CNS white matter. Brain Struct Funct 222(7):2993–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. De Biase LM, Kang SH, Baxi EG, Fukaya M, Pucak ML, Mishina M, Calabresi PA, Bergles DE (2011) NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J Neurosci 31(35):12650–12662

    Article  PubMed  PubMed Central  Google Scholar 

  133. McCarran WJ, Goldberg MP (2007) White matter axon vulnerability to AMPA/kainate receptor-mediated ischemic injury is developmentally regulated. J Neurosci 27(15):4220–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Suárez-Pozos E, Thomason EJ, Fuss B (2020) Glutamate Transporters: expression and function in oligodendrocytes. Neurochem Res 45(3):551–560

    Article  PubMed  Google Scholar 

  135. Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C (2018) Astroglial glutamate signaling and uptake in the hippocampus. Front Mol Neurosci 10:451

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kimelberg HK (2005) Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50(4):389–397

    Article  PubMed  Google Scholar 

  137. Kimelberg H, Goderie S, Higman S, Pang S, Waniewski R (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10(5):1583–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Itoh T, Beesley J, Itoh A, Cohen AS, Kavanaugh B, Coulter DA, Grinspan JB, Pleasure D (2002) AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem 81(2):390–402

    Article  CAS  PubMed  Google Scholar 

  139. Fern RF, Matute C, Stys PK (2014) White matter injury: Ischemic and nonischemic. Glia 62(11):1780–1789

    Article  PubMed  Google Scholar 

  140. Wierzba-Bobrowicz T, Lechowicz W, Kosno-Kruszewska E (1997) A morphometric evaluation of morphological types of microglia and astroglia in human fetal mesencephalon. Folia Neuropathol 35(1):29–35

    CAS  PubMed  Google Scholar 

  141. Roessmann U, Gambetti P (1986) Astrocytes in the developing human brain. Acta Neuropathol 70(3):308–313

    Article  CAS  PubMed  Google Scholar 

  142. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N (2009) Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  143. Haynes RL, Borenstein NS, Desilva TM, Folkerth RD, Liu LG, Volpe JJ, Kinney HC (2005) Axonal development in the cerebral white matter of the human fetus and infant. Journal of Comparative Neurology 484(2):156–167

    Article  Google Scholar 

  144. Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44(4):584–590

    Article  PubMed  Google Scholar 

  145. Buser JR, Segovia KN, Dean JM, Nelson K, Beardsley D, Gong X, Luo NL, Ren J, Wan Y, Riddle A (2010) Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J Cereb Blood Flow Metab 30(5):1053–1065

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. Journal of Comparative Neurology 491(2):109–122

    Article  Google Scholar 

  147. Back SA (2006) Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev 12(2):129–140

    Article  PubMed  Google Scholar 

  148. Khwaja O, Volpe J (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93(2):F153–F161

    Article  CAS  PubMed  Google Scholar 

  149. Back SA, Miller SP (2014) Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann Neurol 75(4):469–486

    Article  PubMed  PubMed Central  Google Scholar 

  150. Billiards SS, Haynes RL, Folkerth RD, Borenstein NS, Trachtenberg FL, Rowitch DH, Ligon KL, Volpe JJ, Kinney HC (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18(2):153–163

    Article  PubMed  PubMed Central  Google Scholar 

  151. Buser JR, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, Luo NL, Ren J, Struve J, Sherman LS (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71(1):93–109

    Article  PubMed  PubMed Central  Google Scholar 

  152. Jakovcevski I, Zecevic N (2005) Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49(4):480–491

    Article  PubMed  Google Scholar 

  153. Kinney HC, Karthigasan J, Borenshteyn NI, Flax JD, Kirschner DA (1994) Myelination in the developing human brain: biochemical correlates. Neurochem Res 19(8):983–996

    Article  CAS  PubMed  Google Scholar 

  154. Drobyshevsky A, Jiang R, Lin L, Derrick M, Luo K, Back SA, Tan S (2014) Unmyelinated axon loss with postnatal hypertonia after fetal hypoxia. Ann Neurol 75(4):533–541

    Article  PubMed  PubMed Central  Google Scholar 

  155. Meng SZ, Arai Y, Deguchi K, Takashima S (1997) Early detection of axonal and neuronal lesions in prenatal-onset periventricular leukomalacia. Brain Develop 19(7):480–484

    Article  CAS  Google Scholar 

  156. Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, Imai Y, Kohsaka S, Takashima S (2001) Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol 20(2):87–91

    CAS  PubMed  Google Scholar 

  157. Haynes RL, Billiards SS, Borenstein NS, Volpe JJ, Kinney HC (2008) Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 63(6):656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dammann O, Hagberg H, Leviton A (2001) Is periventricular leukomalacia an axonopathy as well as an oligopathy? Pediatr Res 49(4):453–457

    Article  CAS  PubMed  Google Scholar 

  159. Riddle A, Maire J, Gong X, Chen KX, Kroenke CD, Hohimer AR, Back SA (2012) Differential susceptibility to axonopathy in necrotic and non-necrotic perinatal white matter injury. Stroke 43(1):178–184

    Article  PubMed  Google Scholar 

  160. Alix JJ, Dolphin AC, Fern R (2008) Vesicular apparatus, including functional calcium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation. J Physiol 586(17):4069–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Schmitz Y, Luccarelli J, Kim M, Wang M, Sulzer D (2009) Glutamate controls growth rate and branching of dopaminergic axons. J Neurosci 29(38):11973–11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Aoki C, Venkatesan C, Go C, Mong JA, Dawson TM (1994) Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. J Neurosci 14(9):5202–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vaes JE, Vink MA, De Theije CG, Hoebeek FE, Benders MJ, Nijboer CH (2019) The potential of stem cell therapy to repair white matter injury in preterm infants: lessons learned from experimental models. Front Physiol 10:540

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kassis I, Vaknin-Dembinsky A, Karussis D (2011) Bone marrow mesenchymal stem cells: agents of immunomodulation and neuroprotection. Curr Stem Cell Res Ther 6(1):63–68

    Article  CAS  PubMed  Google Scholar 

  165. Liang X, Ding Y, Zhang Y, Tse H-F, Lian Q (2014) Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23(9):1045–1059

    Article  PubMed  Google Scholar 

  166. Van Velthoven CT, Kavelaars A, Van Bel F, Heijnen CJ (2010) Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 68(5):419–422

    PubMed  Google Scholar 

  167. Paton MC, McDonald CA, Allison BJ, Fahey MC, Jenkin G, Miller SL (2017) Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: designing targeted stem cell therapies. Front Neurosci 11:200

    Article  PubMed  PubMed Central  Google Scholar 

  168. De Miguel P, M, Fuentes-Julian S, Blazquez-Martinez A, Y Pascual C, A Aller M, Arias J, Arnalich-Montiel F, (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591

    Article  PubMed  Google Scholar 

  169. Jacobs SA, Roobrouck VD, Verfaillie CM, Van Gool SW (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 91(1):32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang Z, Li Z, Deng W, He Q, Wang Q, Shi W, Chen Q, Yang W, Spector M, Gong A (2016) Ectoderm mesenchymal stem cells promote differentiation and maturation of oligodendrocyte precursor cells. Biochem Biophys Res Commun 480(4):727–733

    Article  CAS  PubMed  Google Scholar 

  171. Oppliger B, Joerger-Messerli MS, Simillion C, Mueller M, Surbek DV, Schoeberlein A (2017) Mesenchymal stromal cells from umbilical cord Wharton’s jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact. Cytotherapy 19(7):829–838

    Article  CAS  PubMed  Google Scholar 

  172. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22(4):275–279

    Article  PubMed  Google Scholar 

  173. Tang Y, Cai B, Yuan F, He X, Lin X, Wang J, Wang Y, Yang G-Y (2014) Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplant 23(10):1279–1291

    Article  PubMed  Google Scholar 

  174. Kim EH, Kim DH, Kim HR, Kim SY, Kim HH, Bang OY (2016) Stroke serum priming modulates characteristics of mesenchymal stromal cells by controlling the expression miRNA-20a. Cell Transplant 25(8):1489–1499

    Article  PubMed  Google Scholar 

  175. Mueller M, Oppliger B, Joerger-Messerli M, Reinhart U, Barnea E, Paidas M, Kramer BW, Surbek DV, Schoeberlein A (2017) Wharton’s jelly mesenchymal stem cells protect the immature brain in rats and modulate cell fate. Stem cells and development 26(4):239–248

    Article  CAS  PubMed  Google Scholar 

  176. Oppliger B, Joerger-Messerli M, Mueller M, Reinhart U, Schneider P, Surbek DV, Schoeberlein A (2016) Intranasal delivery of umbilical cord-derived mesenchymal stem cells preserves myelination in perinatal brain damage. Stem cells and development 25(16):1234–1242

    Article  CAS  PubMed  Google Scholar 

  177. Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Bhaskara Rao K (2014) Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PloS one 9 (3):e90972

  178. Sandhu M, Ross H, Lee K, Ormerod B, Reier P, Fuller D (2017) Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury. Exp Neurol 287:205–215

    Article  CAS  PubMed  Google Scholar 

  179. Paton MC, Allison BJ, Fahey MC, Li J, Sutherland AE, Pham Y, Nitsos I, Bischof RJ, Moss TJ, Polglase GR (2019) Umbilical cord blood versus mesenchymal stem cells for inflammation-induced preterm brain injury in fetal sheep. Pediatr Res 86(2):165–173

    Article  PubMed  Google Scholar 

  180. Chen A, Dimambro N, Clowry GJ (2008) A comparison of behavioural and histological outcomes of periventricular injection of ibotenic acid in neonatal rats at postnatal days 5 and 7. Brain Res 1201:187–195

    Article  CAS  PubMed  Google Scholar 

  181. Chen A, Siow B, Blamire AM, Lako M, Clowry GJ (2010) Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Research 5(3):255–266

    Article  PubMed  Google Scholar 

  182. Zhu L-h, Bai X, Zhang N, Wang S-y, Li W, Jiang L (2014) Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage. Brain Res 1563:13–21

    Article  CAS  PubMed  Google Scholar 

  183. Morioka C, Komaki M, Taki A, Honda I, Yokoyama N, Iwasaki K, Iseki S, Morio T, Morita I (2017) Neuroprotective effects of human umbilical cord-derived mesenchymal stem cells on periventricular leukomalacia-like brain injury in neonatal rats. Inflammation and regeneration 37(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No. 81700729).

Author information

Authors and Affiliations

Authors

Contributions

Narasimha M. Beeraka (NMB), Hemanth Vikram (HV), Greeshma M V (GMV), Tahani Huria (TH), Junqi Liu (JL), Ruitai Fan (RF), Pramod Kumar (PK), Chinnappa A Uthaiah (CAU), Vladimir N. Nikolenko (VNN), Kirill V Bulygin (KVB), Mikhail Y Sinelnikov (MYS), and Olga Sukocheva (OS) contributed conceptualized, written and performed the formal analysis. NMB, OS, and MYS proofread the manuscript. All authors have reviewed and approved the manuscript before submission.

Corresponding author

Correspondence to Ruitai Fan MD PhD.

Ethics declarations

Human and Animal Rights

No animal or human used in this study. All of data were collected from the open scientific and public sources.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beeraka, N.M., Vikram, P.R.H., Greeshma, M.V. et al. Recent Investigations on Neurotransmitters’ Role in Acute White Matter Injury of Perinatal Glia and Pharmacotherapies—Glia Dynamics in Stem Cell Therapy. Mol Neurobiol 59, 2009–2026 (2022). https://doi.org/10.1007/s12035-021-02700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02700-7

Keywords

Navigation