Skip to main content

Advertisement

Log in

Ameliorating Effect of Umbilical Cord Mesenchymal Stem Cells in a Human Induced Pluripotent Stem Cell Model of Dravet Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dravet syndrome (DS) is a form of severe childhood-onset refractory epilepsy typically caused by a heterozygous loss-of-function mutation. DS patient-derived induced pluripotent stem cells (iPSCs) are appropriate human cells for exploring disease mechanisms and testing new therapeutic strategies in vitro. Repeated spontaneous seizures can cause neuroinflammatory reactions and oxidative stress, resulting in neuronal toxicity, neuronal dysfunction, blood–brain barrier disruption, and hippocampal inflammation. Antiepileptic drug therapy does not delay the development of chronic epilepsy. The application of mesenchymal stem cells (MSCs) is one therapeutic strategy for thwarting epilepsy development. This study evaluated the effects of human umbilical cord mesenchymal stem cell-conditioned medium (HUMSC-CM) in a new in vitro model of neurons differentiated from DS patient-derived iPSCs. In the presence of HUMSC-CM, increases in superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase (GPX), and glutathione (GSH) levels were found to contribute to a reduction in reactive oxygen species (ROS) levels. In parallel, inflammation was rescued in DS patient-derived neuronal cells via increased expression of anti-inflammatory cytokines (TGF-β, IL-6, and IL-10) and significant downregulation of tumor necrosis factor-α and interleukin-1β expression. The intracellular calcium concentration ([Ca2+]i) and malondialdehyde (MDA) and ROS levels were decreased in DS patient-derived cells. In addition, action potential (AP) firing ability was enhanced by HUMSC-CM. In conclusion, HUMSC-CM can effectively eliminate ROS, affect migration and neurogenesis, and promote neurons to enter a highly functional state. Therefore, HUMSC-CM is a promising therapeutic strategy for the clinical treatment of refractory epilepsy such as DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets and materials used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Jensen FE (2011) Epilepsy as a spectrum disorder: implications from novel clinical and basic neuroscience. Epilepsia 52(Suppl 1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perucca E, Covanis A, Dua T (2014) Commentary: epilepsy is a global problem. Epilepsia 55:1326–1328

    Article  PubMed  Google Scholar 

  3. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D et al (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl 7):2–26

    Article  CAS  PubMed  Google Scholar 

  4. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51:1069–1077

    Article  CAS  PubMed  Google Scholar 

  5. Leach JP(2018) Treatment of epilepsy - towards precision. F1000Res 7

  6. Lopez-Santiago L, Isom LL (2019) Dravet syndrome: a developmental and epileptic encephalopathy. Epilepsy Curr 19:51–53

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guerrini R, Aicardi J (2003) Epileptic encephalopathies with myoclonic seizures in infants and children (severe myoclonic epilepsy and myoclonic-astatic epilepsy). J Clin Neurophysiol 20:449–461

    Article  PubMed  Google Scholar 

  8. Steinlein OK (2004) Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5:400–408

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Gao C, Chen W, Ma W, Li X, Shi Y, et al. (2016) CRISPR/Cas9 facilitates investigation of neural circuit disease using human iPSCs: mechanism of epilepsy caused by an SCN1A loss-of-function mutation. Transl Psychiatry 6: e703

  10. Cobb CA, Cole MP (2015) Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis 84:4–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leszek J, Barreto GE, Gąsiorowski K, Koutsouraki E, Ávila-Rodrigues M, Aliev G (2016) Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets 15:329–336

    Article  CAS  PubMed  Google Scholar 

  12. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pearson-Smith JN, Patel M(2017) Metabolic dysfunction and oxidative stress in epilepsy. Int J Mol Sci 18

  14. Eldin EE, Elshebiny HA, Mohamed TM, Abdel-Aziz MA, El-Readi MZ (2016) The role of antiepileptic drugs in free radicals generation and antioxidant levels in epileptic patients. Int J Neurosci 126:105–115

    Article  CAS  PubMed  Google Scholar 

  15. Menon B, Ramalingam K, Kumar RV (2014) Low plasma antioxidant status in patients with epilepsy and the role of antiepileptic drugs on oxidative stress. Ann Indian Acad Neurol 17:398–404

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ambrogini P, Minelli A, Galati C, Betti M, Lattanzi D, Ciffolilli S et al (2014) Post-seizure α-tocopherol treatment decreases neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus. Mol Neurobiol 50:246–256

    Article  CAS  PubMed  Google Scholar 

  17. dos Santos PS, Costa JP, Tomé Ada R, Saldanha GB, de Souza GF, Feng D et al (2011) Oxidative stress in rat striatum after pilocarpine-induced seizures is diminished by alpha-tocopherol. Eur J Pharmacol 668:65–71

    Article  PubMed  Google Scholar 

  18. Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int: 484613

  19. Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vezzani A, Dingledine R, Rossetti AO (2015) Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application. Expert Rev Neurother 15:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li S, Jiang D, Ehlerding EB, Rosenkrans ZT, Engle JW, Wang Y et al (2019) Intrathecal administration of nanoclusters for protecting neurons against oxidative stress in cerebral ischemia/reperfusion injury. ACS Nano 13:13382–13389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tejada S, Sureda A, Roca C, Gamundí A, Esteban S (2007) Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bull 71:372–375

    Article  CAS  PubMed  Google Scholar 

  23. Zhong G, Yang X, Jiang X, Kumar A, Long H, Xie J et al (2019) Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. Nanoscale 11:11605–11616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M (2015) Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 75:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryan K, Liang LP, Rivard C, Patel M (2014) Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy. Neurobiol Dis 64:8–15

    Article  CAS  PubMed  Google Scholar 

  26. Alhazzani A, Rajagopalan P, Albarqi Z, Devaraj A, Mohamed MH, Al-Hakami A, et al.(2018) Mesenchymal stem cells (MSCs) coculture protects [Ca(2+)](i) orchestrated oxidant mediated damage in differentiated neurons in vitro. Cells 7

  27. Zündorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14:1275–1288

    Article  PubMed  PubMed Central  Google Scholar 

  28. Butler T, Li Y, Tsui W, Friedman D, Maoz A, Wang X et al (2016) Transient and chronic seizure-induced inflammation in human focal epilepsy. Epilepsia 57:e191-194

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eyo UB, Murugan M, Wu LJ (2017) Microglia-neuron communication in epilepsy. Glia 65:5–18

    Article  PubMed  Google Scholar 

  30. Technau GM (2008) Advances in experimental medicine and biology. Brain development in Drosophila melanogaster Preface. Adv Exp Med Biol 628:v–vi

    PubMed  Google Scholar 

  31. Eyo UB, Peng J, Murugan M, Mo M, Lalani A, Xie P, et al. (2016) Regulation of physical microglia-neuron interactions by fractalkine signaling after status epilepticus. eNeuro 3

  32. Ambrogini P, Torquato P, Bartolini D, Albertini MC, Lattanzi D, Di Palma M et al (2019) Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: the role of vitamin E. Biochim Biophys Acta Mol Basis Dis 1865:1098–1112

    Article  CAS  PubMed  Google Scholar 

  33. Huang PY, Shih YH, Tseng YJ, Ko TL, Fu YS, Lin YY (2016) Xenograft of human umbilical mesenchymal stem cells from Wharton’s jelly as a potential therapy for rat pilocarpine-induced epilepsy. Brain Behav Immun 54:45–58

    Article  CAS  PubMed  Google Scholar 

  34. Varvel NH, Jiang J, Dingledine R (2015) Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol 55:229–247

    Article  CAS  PubMed  Google Scholar 

  35. Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015: 745613

  36. Tanna T, Sachan V (2014) Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther 9:513–521

    Article  CAS  PubMed  Google Scholar 

  37. Qian L, Saltzman WM (2004) Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification. Biomaterials 25:1331–1337

    Article  CAS  PubMed  Google Scholar 

  38. Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Altucci L et al (2005) Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem 94:645–655

    Article  CAS  PubMed  Google Scholar 

  39. Costa-Ferro ZS, Vitola AS, Pedroso MF, Cunha FB, Xavier LL, Machado DC et al (2010) Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy. Seizure 19:84–92

    Article  PubMed  Google Scholar 

  40. Leal MM, Costa-Ferro ZS, Souza BS, Azevedo CM, Carvalho TM, Kaneto CM et al (2014) Early transplantation of bone marrow mononuclear cells promotes neuroprotection and modulation of inflammation after status epilepticus in mice by paracrine mechanisms. Neurochem Res 39:259–268

    Article  CAS  PubMed  Google Scholar 

  41. Costa-Ferro ZS, de Borba CF, de Freitas Souza BS, Leal MM, da Silva AA, de Bellis Kühn TI et al (2014) Antiepileptic and neuroprotective effects of human umbilical cord blood mononuclear cells in a pilocarpine-induced epilepsy model. Cytotechnology 66:193–199

    Article  PubMed  Google Scholar 

  42. Palomares T, Cordero M, Bruzos-Cidon C, Torrecilla M, Ugedo L, Alonso-Varona A (2018) The neuroprotective effect of conditioned medium from human adipose-derived mesenchymal stem cells is impaired by N-acetyl cysteine supplementation. Mol Neurobiol 55:13–25

    Article  CAS  PubMed  Google Scholar 

  43. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836–1846

    Article  CAS  PubMed  Google Scholar 

  44. Zhao H, Li S, He L, Han X, Huang H, Tang F et al (2020) Generation of iPSC line (USTCi001-A) from human skin fibroblasts of a patient with epilepsy. Stem Cell Res 45:101785

    Article  CAS  PubMed  Google Scholar 

  45. Chen W, Liu J, Zhang L, Xu H, Guo X, Deng S et al (2014) Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique. Sci Rep 4:5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 62:170–185

    Article  CAS  PubMed  Google Scholar 

  47. Bragin A, Wilson CL, Engel J Jr (2000) Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41(Suppl 6):S144-152

    Article  PubMed  Google Scholar 

  48. Salem NA, El-Shamarka M, Khadrawy Y, El-Shebiney S (2018) New prospects of mesenchymal stem cells for ameliorating temporal lobe epilepsy. Inflammopharmacology 26:963–972

    Article  CAS  PubMed  Google Scholar 

  49. Bykhovskaia M (2011) Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol 22:387–392

    Article  CAS  PubMed  Google Scholar 

  50. Vallejo D, Codocedo JF, Inestrosa NC (2017) Posttranslational modifications regulate the postsynaptic localization of PSD-95. Mol Neurobiol 54:1759–1776

    Article  CAS  PubMed  Google Scholar 

  51. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L et al (2016) Regulation of morphine-induced synaptic alterations: role of oxidative stress, ER stress, and autophagy. J Cell Biol 215:245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102:18171–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bardy C, van den Hurk M, Kakaradov B, Erwin JA, Jaeger BN, Hernandez RV et al (2016) Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol Psychiatry 21:1573–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, et al. (2019) Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 142: e39

  55. Pitkänen A, Engel J Jr (2014) Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11:231–241

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A et al (2017) Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: an open label study. Adv Med Sci 62:273–279

    Article  PubMed  Google Scholar 

  57. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    Article  CAS  PubMed  Google Scholar 

  58. Bhuyan P, Patel DC, Wilcox KS, Patel M (2015) Oxidative stress in murine Theiler’s virus-induced temporal lobe epilepsy. Exp Neurol 271:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choonara YE, Kumar P, Modi G, Pillay V (2016) Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin Drug Deliv 13:1029–1043

    Article  CAS  PubMed  Google Scholar 

  60. Kim Y, Jo SH, Kim WH, Kweon OK (2015) Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther 6:229

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bonafede R, Scambi I, Peroni D, Potrich V, Boschi F, Benati D et al (2016) Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis. Exp Cell Res 340:150–158

    Article  CAS  PubMed  Google Scholar 

  62. Zhong G, Yang X, Jiang X, Kumar A, Long H, Xie J et al (2019) Correction: Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. Nanoscale 11:23504–23505

    Article  CAS  PubMed  Google Scholar 

  63. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schuster J, Laan L, Klar J, Jin Z, Huss M, Korol S et al (2019) Transcriptomes of Dravet syndrome iPSC derived GABAergic cells reveal dysregulated pathways for chromatin remodeling and neurodevelopment. Neurobiol Dis 132:104583

    Article  CAS  PubMed  Google Scholar 

  65. Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V, Escobar J, Sastre J, Almeida A et al (2012) γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun 3:718

    Article  PubMed  Google Scholar 

  66. Ross EK, Gray JJ, Winter AN, Linseman DA (2012) Immunocal® and preservation of glutathione as a novel neuroprotective strategy for degenerative disorders of the nervous system. Recent Pat CNS Drug Discov 7:230–235

    Article  CAS  PubMed  Google Scholar 

  67. Long Q, Upadhya D, Hattiangady B, Kim DK, An SY, Shuai B et al (2017) Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci U S A 114:E3536-e3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng Q, Zhang Z, Zhang S, Yang H, Zhang X, Pan J et al (2015) Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation. Brain Res 1594:293–304

    Article  CAS  PubMed  Google Scholar 

  69. Mert T, Kurt AH, Arslan M, Çelik A, Tugtag B, Akkurt A (2015) Anti-inflammatory and anti-nociceptive actions of systemically or locally treated adipose-derived mesenchymal stem cells in experimental inflammatory model. Inflammation 38:1302–1310

    Article  CAS  PubMed  Google Scholar 

  70. Facchinetti F, Dawson VL, Dawson TM (1998) Free radicals as mediators of neuronal injury. Cell Mol Neurobiol 18:667–682

    Article  CAS  PubMed  Google Scholar 

  71. Haidara MA, Assiri AS, Youssef MA, Mahmoud MM, Ahmed MSE, Al-Hakami A et al (2015) Differentiated mesenchymal stem cells ameliorate cardiovascular complications in diabetic rats. Cell Tissue Res 359:565–575

    Article  CAS  PubMed  Google Scholar 

  72. Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y et al (2015) SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11:1037–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li R, Kou X, Geng H, Xie J, Tian J, Cai Z et al (2015) Mitochondrial damage: an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. J Hazard Mater 287:392–401

    Article  CAS  PubMed  Google Scholar 

  74. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abdanipour A, Tiraihi T, Mirnajafi-Zadeh J (2011) Improvement of the pilocarpine epilepsy model in rat using bone marrow stromal cell therapy. Neurol Res 33:625–632

    Article  PubMed  Google Scholar 

  76. Majolo F, Marinowic DR, Palmini ALF, DaCosta JC, Machado DC (2019) Migration and synaptic aspects of neurons derived from human induced pluripotent stem cells from patients with focal cortical dysplasia II. Neuroscience 408:81–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jean de Dieu Habimana for checking the English grammar of this manuscript.

Funding

This study was supported by Frontier Research Programs of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Grant No. 2018GZR110105020), the Science and Technology Planning Project of Guangdong Province of China (No.2020B1212060052), and the Guangdong Provincial Natural Science Foundation (2021A1515010526).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design, H. F. Z., S. L., L. H., and Z. Y. L.; acquisition of data, H. F. Z., X. B. H., and S. L.; analysis and interpretation of data, H. F. Z. and F. T.; drafting the article, H. F. Z.; revising it critically for important intellectual content, H. F. Z., W. Y. D. S. H. D., R. Q. H., and Z. Y. L.; all authors approved the final version to be published.

Corresponding author

Correspondence to Zhiyuan Li.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Participate

Not applicable.

Consent for Publication

All of the co-authors approved the final version of the manuscript and agreed to submit it to Molecular Neurobiology.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1068 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, S., He, L. et al. Ameliorating Effect of Umbilical Cord Mesenchymal Stem Cells in a Human Induced Pluripotent Stem Cell Model of Dravet Syndrome. Mol Neurobiol 59, 748–761 (2022). https://doi.org/10.1007/s12035-021-02633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02633-1

Keywords

Navigation